ETAP 演示版 入门

Sales@etapchina.com

Etapchina.com

+86 - 10 - 84463375

IS09001:2008 体系认证

认证编号: 10002889

本文件为 OTI 公司所属机密文件, 未经 OTI 公司书面授权, 不得复制、公开本文件或将本文件泄露给他人

目录

1.	绪论	4
2.	产品介绍	2
	2.1 建模	6
	2.2 程序功能	8
	2.3 单线图	11
	2.4 单线图功能	12
	2.5 3-D 数据库	16
	2.6 显示图	
	2.7 状态配置	20
	2.8 版本数据	22
	2.9 ETAP 向导	24
	2.10 案例向导	25
	2.11 分析向导	27
	2.12 工程向导	29
	2.13 输出数据比较程序	31
	2.14 编辑器	32
	2.15 数据库	33
	2.16 ODBC(开放式数据库连接)	35
	2.17 OLE 客户端	36
	2.18 转换为 EMF、WMF 和 DXF 文件	37
	2.19 打印/绘制单线图	

	2.20	错误指示器	39
	2.21	应用程序消息记录器	40
	2.22	输出报告管理器	41
	2.23	Crystal 报告	42
	2.24	列表报告管理器	43
ЕJ	「AP 演	示版的功能特点与限制条件	44
3.	ETAP	·演示版安装	48
4.	演示版	反结构	58
5.	界面图	ছা	60
	5.1 绯	扁辑模式	60
	5.2 分	↑析模式	65
	5.3 万	∈例−电机加速模型	68
6.	教程		69
	6.1 仓	刘建单线图	71
	6.2 淖	明流分析	78
	6.3 7	下平衡潮流分析	82
	6.4 短	豆路分析	87
	6.5 劲	瓜闪分析	93
	6.6 电	3.机启动分析	
	6.7 诸	皆波分析	
	6.8 1	昏态分析	115
	6.9 货	R护配合(star)	120

6.10	最优潮流分析	
6.11	可靠性分析	140
6.12	直流潮流分析	143
6.13	直流短路分析	148
6.14	蓄电池容量和放电分析	153
6.15	地下电缆管道系统	
6.16	接地网系统	
6.17	电缆牵引系统	168
6.18	配电板系统	172
6.19	输出报告	178
6.20	设备库	

1.绪论

ETAP 作为世界上领先的最为受欢迎且最为强大的电气工程分析 和管理工具,其领先功能模块包括电力系统设计、分析及监控等功能 模块; 很荣幸 ETAP 能作为您分析电力系统的工具,为此,我们推出 ETAP 演示版作为我们持续致力于优质客户的支持的一部分。

ETAP 是一个运行在 Microsoft[®] Windows[®]2008 R2 (SP1), 2012 / R2,7 (SP1), 8 / 8.1,10 操作系统上的 64 位程序。演示版是一个 相对比较开放的版本,支持更改单线图、运行系统进行仿真研究,其 结果显示与商业版的结果显示一样,均是以图表方式直观反馈我们的 研究结果。并且能够让您体验 ETAP 软件中的许多特性和功能,包括 弧闪,潮流,交流/直流短路 (ETAP 演示版的具体功能,请参考 ETAP 演示版功能限制文档)。

OTI 公司高度重视用户群体的满意度、支持和反馈。成千上万小时的设计和工程经验已应用在软件的整体开发中,也是我们软件成为一款优秀产品的有力保障之一。我们用最先进的软件开发经验与实际上实用的工程知识相结合,创建用户友好型的智能工软件。它具有专业工程师所需的复制功能,但新手工程师可以很容易地使用它。通过我们的软件和经验,您可以切身体会到 ETAP 软件是怎样成为全球范围内首屈一指的电力系统分析及管理工具的一款软件。

1

2.产品介绍

ETAP 是一个图形化的电力系统分析软件,可在 Microsoft®Windows®2008R2(SP1),2012/R2,7(SP1),8/8.1,10 操作系统上运行。除了标准的离线仿真模块,ETAP 还可以利用实时运 行数据进行监控和仿真,优化以及高速智能减载。但是,ETAP 演示版 中仅包含离线仿真模块。

ETAP 是由工程师为工程师设计和开发的,目的是在一个具有多 个接口视图的集成包中处理电力系统的各种学科,例如交流和直流网 络、电缆跑道、地网系统、地理信息系统、面板系统、保护装置协调 /选择和控制系统图。

ETAP 允许您创建和编辑图形化的单线图,地下电缆管道系统,三 维电缆系统,高级的时间-电流保护设备配合和选择画图,地理信息

2

系统,三维接地网系统。程序根据以下三个关键概念进行设计:

模拟现实操作

程序操作最接近实际的电气系统操作。例如,当您打开或者关闭 断路器,停止运行某一设备,又或者改变电机运行转态时,其断电部 件便以灰色显示在单线图上。ETAP 包含了许多革命性的新概念,可以 直接从单线图上决定保护装置的配合动作。

全面的数据集成

ETAP 将系统设备的电气、逻辑、机械及物理属性都包含在一个数据库中。例如,一条电缆不仅拥有电气属性和物理尺寸的数据,还载有指示其电缆通道布线的信息。因此,一根电缆的数据既可用于潮流或者短路分析(需要电气参数和连接方式),也可用于进行电缆载流

量的重新校核计算(需要物理布线数据)。数据集成提供了整个系统数据的一致性,并且避免同一元件数据多次录入,极大地节省时间,提高效率。

简单的数据录入

ETAP 对每个电气装置进行详细的数据跟踪。数据编辑器通过特定研究,计算得到的数据,以此加速输入过程。为了达到这一目的, 我我们以最符合逻辑的数据输入方式为不同类型的分析或设计建立 编辑器。

ETAP单线图的许多特性可以帮助您建立各种复杂的网络。例如, 每个设备可单独的具有自身的方向、大小和显示模型(IEC或ANSI)。 还可以再单线图的支线和母线之间安置多个保护装置。

4

ETAP 提供了显示和查看电气系统的多种选择, 暨显示图。在每个 图中, 每个设备的可拥有不同的位置、大小、方向和模型。此外, 在 任意显示图中, 保护装置和继电器可以隐藏或显示。例如, 在一个显 示图中所有的保护装置都可见, 而另一个显示图中只有断路器可见。 (适用于潮流计算的布局)

复合网络和电机是 ETAP 最强大的功能之一。复合网络允许任意 层次的嵌套。例如,复合网络可以嵌套复合网络,这一特点既可以保 证能建立复杂的网络,又能保持一个整洁、无干扰的显示图,显示您 想要强调的内容;下一级别系统的细节只需点击鼠标即可知晓。所谓

5

ETAP 将一切尽在您掌控中。

我们认为 ETAP 是电气系统最重要的集成数据库,可以对系统进行多次仿真以用于不同的分析或设计目的。

2.1 建模

- 虚拟操作
- 全面的数据集成(电气、逻辑、机械和物理属性)
- 环状和辐射状系统
- 无线孤立子系统
- 无限的系统连接
- 多重复合条件
- 子系统的多层嵌套
- 高级稀疏矩阵技术
- 用户存取控制和数据的有效性
- 多模块同时进行异步计算
- 阶段性的数据存储方式,避免因掉电引起数据丢失
- 基于Windows[®] 2008/2012/7/8/8.1/10 开发的真64位程序
- 三相和单项模型,包括配电板和子配电板

同时进行电缆阻、短路和潮流研究的一个例子

2.2 程序功能

入门

- 五级自动错误数据检测
- 动态帮助行和错误信息
- 用于跟踪程序使用和访问的消息记录器
- 多用户访问级别
- 自动创建单线图
- 自动设备连接方式
- 自动选择可用管脚
- 自动连接到最近的突出显示元件
- 自动断开和重新连接
- ODBC (开放式数据库连接) 使用SQL
- 通过信息,备注和评论页面管理维护数据
- 单个工程项目的多用户管理
- 并行ETAP项目开发
- 母项目与子项目的独立快照
- 合并基础,版本数据和TCC视图
- 合并独立的ETAP项目文件
- 集成的单相、三相和直流系统
- 集成的单线图和地下电缆管道系统
- 综合的单线图和继电保护配合
- 通用数据库
- 简明数据输入

● 多重子系统和电机

Select Access Level	×
Project File Name	EXAMPLE
User Name	OTI
Access Level	
 Admini 	istrator
Project Editor	Browser
O Base Editor	◯ Librarian
O Revision Editor	◯ Controller
◯ Checker	Operator
Help	K
	Cancer

- 用户可控制的自动保存和处理
- 用户可控制的设备默认值设置
- 电机,发电机,变压器,电抗器,调速器和激励器的典型数据
- 单个带载调压分接头时间延迟(初始和运行)
- 无电压等级限制
- 对连接于支路和负荷的保护和测量设备无特殊要求
- 单母线可连接无限多负荷
- 无频率限制
- 英制和米制单位
- 设备标识可由25个字符组成
- 制造商的原始数据输入
- 个别及整体的负荷调整参数

- 电缆电阻温度自动校正
- 设备浏览
- 等效负荷
- 负荷设备电缆,无需终端母线
- 通过标记数据编辑和检查
- 数据变更的事件记录
- 具有用户定义数据的智能编辑器
- 与分析相关的数据输入要求
- 多用户网络支持
- 与ETAP实时兼容的数据库,用于实时监控、仿真和监控
- 在ETAP运行时,工具条选择控件可进行优先选择修正
- 借用许可证
- ETAP许可证管理器配置程序
- 无钥匙网络许可

📝 🤤 🗲 🛦 狮 〜 🐠 ಓ 👸 ±P ±🗲 📉 🏭 😍 🚟 🐇 🛟 🖶 🗶 🎸

2.3 单线图

ETAP为构建单线图提供了一个易于使用的全图形用户界

(GUI)。您可以在这里以图形方式添加、删除、重新定位、连接元件、放大或缩小、关闭或打开显示网格、更改元件大小、更改元件 方向、更改模型、更改设备颜色、创建个性化主题、隐藏或显示保 护设备、输入属性、设置运行状态等。

当您创建新的单线图文件时,您最初处于编辑模式,设置状态 为正常即默认条件。电网和连续性检查均关闭。如果打开(运行) 现有的单线图时,它包含最后一次编辑后所保存的所有属性,即把 模式(编辑,潮流,短路,电机启动等),配置状态,显示选项, 视图大小和初始状态的视图作为初始条件。

当创建新项目时,将会自动创建单线图,且其ID(名称)就是 单线图的ID,并赋予唯一编号。在现有的工程中创建新的单线图只 需点击工具栏上的新建演示图按钮,如下所示。

3-D Database To	olbar		▼ ×
🗱 Base	🝷 🔁 Study View 🔹 Study View	✓ → Normal	- 🗈 🥌
	Click here to create a		
	cony of your one-line		

ETAP电气系统图用单线图表示三相平衡系统。单线图是您研究 的起始点。您可以通过从单线图编辑工具栏中以任意顺序连接母 线,支线,电动机,发电机和保护设备,以图形方式构建电气系 统。您可以以图形方式将元件连接到母线(通过从设备元件拖动 线)或使用设备属性编辑器页面(双击元件并打开其属性编辑 器)。使用编辑器,您可以指定元件的工程特性,例如其额定值, 设置,加载,连接等。您还可以选择在将每个元件放入单线图之前 设置每个元件的默认值,以最大限度地减少数据输入所需的时间。

2.4 单线图功能

- 可生成无限多的单线图3
- 单相系统(2线和3线)
- 配电板系统
- 无限状态配置/方案(切换设备、电机、负荷等)
- 多工程属性(基础和版本数据)
- 三维 (3-D) 数据库
- 数据管理
- 综合接地网系统
- 多个装在类别(条件),具有单独的装在百分比
- 无限单线图嵌套(用于子系统, MCC等)

- 同时观看不同单线图
- 同时观看不同系统配置
- 同时观看不同的分析结果
- 相位适配器可将三相转换为混合单相网络
- ▶ 单线图模板
- 自动建立单线图
- 自动母线/节点嵌入
- 电路追踪
- 从编辑器或项目窗口查找元件
- ▶ 图形自动选择
- 图形模型选择
- 基于结果的图形
- 元件分组/取消元件分组
- ▶ 单独或整体的改变设备的文本大小、模型、颜色、方向和对齐方 式
- 主题管理器
- 主题配色方案提供了单独定制每个单线图的灵活度
- 模型库
- Active X控件(可编程对象)
- 图形化显示故障/清除母线故障
- 可选择缩放至适合
- ▶ 最先进的内置图像化用户界面

- 拖、拉、剪切、粘贴、撤销、恢复、缩放等功能
- 内置ETAP CAD系统
- XML数据交换
- 可通过dxf格式文件和源文件格式将单线图导出到第三方CAD系统
- 导入OLE对象(文本,图片,电子表格,GIS地图等)
- 导入ASCII工程文件
- 具有内置转换功能,适用于西门子PSS[®]E, EasyPower[®], SKM[®]Dapper[®]和CAPTORTM。
- 可执行外部程序
- 用户自定义的标识计算结果的图形化显示
- 用户自定义的标识铭牌数据的图形化显示
- 可选择IEC或ANSI设备符号
- 元件符号的多种尺寸及方向
- 多种颜色标记符号和标识
- 支持典型字体
- 在单线图上隐藏或显示保护设备
- 远程连接器,实现更整洁的单线图布局
- 可在单线图上操作开关设备
- 连通性检查将断电设备显示为半透明图像,以表示当前系统配置 情况
- 配置管理器可对所有开关设备的状态(开/合)进行比较
- 单线图上显示变压器带载或不带载调压分接头位置

- 在单线图上直接进行继电保护装置整定
- 在同一个项目中构建原理图,并与单线图集成
- 全面的打印/绘图功能
- 可在图形上选择单一或者多个设备、对象及复合网络
- 对系统组件的列表管理(输入数据)
- 具有可查找功能的用户自定义输出报告(Crystal报告)
- Crystal报告的分类输出即报告管理器
- Access数据库输出报告
- Crystal报告使用数据库数据
- 全面的总结报告
- 用户可定义的输出图标
- 提供符合状态和保护设备位置的报告
- 系统回收站可存储和恢复曾被删除的设备
- 每一分析模块均有自己的工具条
- 键盘快捷键

2.5 3-D 数据库

ETAP将电气系统综合到一个项目中,并创建了三个主要的系统组件:

●显示

代表任何用途的设计数据(如阻抗图、研究结果或平面图)的单 线图的无限独立图形表示。

●配置

无限制的独立系统配置,用于识别开关设备(打开和闭合),电 机和负载(连续,间歇和备用),发电机运行模式(平衡节点, 电压控制,无功功率控制,功率因数控制)和 MOV 状态(打开, 关闭,节流和备用)。

●版本数据

基础数据和无限制的版本数据 ID, 用于跟踪元件的工程属性(如 铭牌或设置)的更改或修改

这三个系统组件以正交方式组织,以便在构建和操作 ETAP 项目 时提供强大的功能和灵活性。使用这个表示,状态配置和版本数据的 这一概念,您可以创建多种不同配置和不同工程属性的网络组合,使 您可以使用一个数据库全面调查和研究电网的行为和特征。这意味着, 你不必复制你的数据库不同的系统配置,操作预演分析等。

ETAP 依靠三维数据库这个概念来实现显示, 配置, 基础及版本数据。使用这个多维数据库的概念, 您可以在同一项目数据库中独立选择特定的显示方式, 配置状态或版本数据。

Study Solution (Study Options, Parameters, Alerts, etc.)

Loading

这些选择可以与多个加载类别和多个研究案例结合使用,以快速 有效地执行系统设计和分析,同时避免在使用单个项目文件的多个副 本来维护各种系统更改记录时产生的意外的数据差异。

2.6 显示图

创建新项目时,将在 ETAP 窗口中创建名为 OLV (单线视图)的单 线图表示。在这里您可以建立一个电气系统的单线图。ETAP 支持创建 无限数量的单线图。这一强大的功能使您能够自定义每个单线图表示, 以生成不同的图形表示,如下所示。一个显示图可能会显示部分或全 部保护设备,而另一个显示图可能是一个完全不同的布局,且该布局 最适合用来显示潮流结果等。

Three Different Presentations of the same One-Line Diagram

单线图有以下特点:

- 图形显示设备和连接器位置
- 基于相类型(单相、三相)连接的图形化显示法
- 设备规格(五种)

- 母线规格(五种)
- 设备和连接器颜色
- 符号(用于交直流设备的ANSI和IEC标准符号)
- 设备分组(包含连接器)
- 设备方向(0,90,180,270度)
- 注释方向(-90, -45,0, 45,90度)
- 用于开关和保护设备的可视选项(隐藏和显示)
- 注释的显示选项(结果,交流,交-直流和直流设备)
- 各种运行模式的显示选项(如编辑,潮流,短路)
- 网格显示和尺寸选项
- 连通性检车选项(开或关)
- 状态配置关联
- 打印选项(如打印规格,居中,打印机类型,纸张大小等)
- 独立于每个显示图的OLE对象
- 独立于每个显示图的Active X对象
- 主题外观

另外,各显示图的会储存最后的配置,运行模式,缩放比例,视图位置,打印设置等。

2.7 状态配置

ETAP具有强大的配置功能,允许您设定项目单线图中包含的各种电气元件的运行状态。断路器,熔断器和开关等电气元件可设置为打开或关闭状态。负荷和电机可以连续,间歇地运行,也可以作为备件分配。电源可以在平衡节点、电压控制,无功功率控制或者功率因数控制模式下运行。此配置概念的实现,遵循以下准则:

- 当将配置附加到单线图时,该单线图中所有元件都会采用预定义状态,就如同对应元件在该配置下保存。
- 每个配置都是独立于其他配置,且可以为每个配置单独设置每个 元件的状态。
- 任何配置都可以附加到任何单线图中。相反,任何单线图可以同时附加到相同的配置下。
- 可以创建不限数量的配置。
- 将配置附加或关联到显示图中,首先确保显示图窗口处于运行转态,然后在配置工具栏中选择配置状态。下图显示了从正常状态
 更改为TS事件配置时的表示更改。

通过使用状态配置功能,一个项目就不需要保持多个副本,便 于对不同配置进行电气系统研究。此外,当您修改工程特性或者向 单线图中添加新元件时,所有配置的更改都将自动保存。

AK ulu

DC System

Bus1 0.48 kV

Ţ

▼ ×

• 🗊 🖌

Sub3 Ne

• 🔑 Norma

CAP1 0.45 Mwar

Ο

Mtr2 2500 HB

Study View

05 5yn1 1250 HP

Syn1 Motor, 1250 HP Load Model = Centr. Comp Inertia = 0.799 MW-Sec/MVA

3-D Dat

😫 Base

Sub2A-N

🔹 🗞 Study View

2.8 版本数据

版本数据是ETAP提供的第三个正交系统组件。项目中与元件 关联的工程数据存储在项目数据库中。ETAP提供了与各元件相关 的无限种不同修订版本的工程数据。

ETAP将修订版本level 0 作为基本版本参数。您可以随时分 配修订版本参数来区分单线图上的任意一个或所有设备相关的工 程参数,而不会影响或改变该基本版本参数。一个设备如果不存 在于基础版本中时,此设备同样不存在于修订版本中。ETAP限制 了您的项目一次只能使用一个修订版本,并且必须在基本版本中 添加或删除系统设备进行单线图的修改。当然,基础版本数据必 须处于激活状态(从修订数据中退出)才能保存或者关闭工程。

使用操作预演分析

修订版本参数的首要用途就是使您能对电气系统进行"操作 预演"分析计算,其中您可以更改网络组件的工程参数,并将这 些结果与基础数据或其他修订数据进行比较。例如,您可以在修 订数据中更改变压器的阻抗(保存基础数据不变),并将短路结 果与基础数据进行比较。

修订版本数据还可以用于对将来创建的系统进行修改,并避 免更改您的基础版本数据。例如,您可以在已有的系统上添加新 的变电站,并且可以将所有修改的数据保留在修订数据中。在这 个例子中,基础数据代表您现有的系统,修订数据代表您的设计 以供将来修改。 根据该例子进行深入剖析,首先将变电站中的新设备添加到 基础数据中,并将它们设置成退出运行状态,这样新增加的设备 不会影响到现有系统的研究结果。在修订数据中,将新增加的设 备设置成运行状态,并输入其所需的数据。当该新变电扎启用

后,将修订版本合并到基础版本中以执行并且保存该特定更改。

2.9 ETAP 向导

ETAP 包含了方便的工程管理工具——ETAP 向导,它允许您随时记录和运行任何分析。ETAP 向导包括案例向导,分析向导和工程向导。以下将进行详细描述

三个 ETAP 向导在系统工具栏上

2.10 案例向导

案例向导运行用户将所有的分析选项集中一个地方。因此,案例 向导在任何您想记录一个已经完成分析是很有用。每个工程文件都包 含有一个案例。案例被自动创建并记录到案例向导中,它可以在任何 时候单独运行。一个工程可以有无数个案例。案例组成参数如下:

- 系统(网络分析或CSD分析)
- 显示图 (如单线图, UGS或CSD)
- 版本数据(基础或修订版本数据)
- 配置状态(如正常,阶段1或TS事件)
- 分析模式(如潮流或短路)
- 分析案例(负荷和发电机系统的运行因子和解决方案参数)
- 分析类型(随着分析模式的变化而变化)
- 输出报告(随着分析模式的变化而变化)

当案例在工程中运行时,此时会自动创建输出报告或者覆盖原有的同名报告。

Scenario Wizard	×
Scenario	
ID	AF-1-Phase Run
New Copy	Rename Delete
Parameters	
System Network Analys	✓ Study Mode Arc Flash ✓
Presentation Study View	Study Type ANSI Arc-Flash
🖓 Base	✓ AF 1-Phase ✓
	✓ Output Report AF-1-Phase ✓
Get Real-Tir	a
Preferences/Ini File	"What-If" Studies Edit Select
Project and Library	
ETAP Default Library	D:\ETAP14.2Rel\LIB\EtapLib1600.lib
O Project Specific Library	D: \ETAP14.2Rel \Lib \etaplib1600.lib
Project File	D:\Pecan64Rel\Example-ANSI\Example-ANSI
Remarks	
Output Data Comparison	Compare View Edit
Benchmark File D:\Peca	Nexample-ANSI\Output\AF-1-Phase.AAF1S
< AF-1-Phase	Help OK Cancel

Scenario Wizard Editor

您可以通过在案例向导中选择参数或记录您已经在单线图中分析案例选择的选项等方法创建一个案例。

2.11 分析向导

宏减少了运行多个案例所需的时间。每个项目文件都包含一个研究向导。使用研究向导可以将现有方案按顺序分组到研究宏中。必须 先创建要包含在研究宏中的方案,然后才能创建宏。使用方案向导创 建方案。(有关详细信息,请参阅上面的"案例向导"部分。)

一个项目可能有无限个分析宏。运行分析宏时,所有案例都运行, 然后创建或者覆盖输出报告,就像单独运行案例一样。例如,您可以 将潮流或特定类型的潮流相关的方案分组到一个分析宏中

Study Wiz	ard			×
Study N	lacro			6
<u>I</u> I	D	Phase	-1	Rup
1	<u>N</u> ew C <u>o</u> p	y Re	ename Delete	
🗖 Se	end LF Results to Fi	le		Clear
			Brow	vse View
Parame	ters			
I 1				
	Order 2	Active	Scenario	Pause 🔺
	3	✓	UNLF	
	4	v	ULF	
	5	~	STARModeSC	
	6	v	LFReport	
	7	v	ANSI-1-Phase	
l l	0		ANGLMav	
		Add	Insert Delete	View
s PI	hase-1	•	}≥ <u>H</u> elp C	DK Cancel

分析向导编辑器

入门

2.12 工程向导

工程向导与项目无关,并保存在 ETAP 文件夹中。它使用户能够 将现有的分析宏分组到工程宏。当您有多个项目要同时运行分析宏及 其案例时,应该使用工程宏。此功能可自动打开和关闭项目文件,并 单独执行分析宏及其案例。

Project Wizard				
Project Wizard ID Run Selected Run Active Run Active Study Wizard Selection				
Activate All Deactivate All				
Order ∠ Active Path Project Study Macro Pause Image: Add Multiple Add Insert Delete Vrew Browse				
Comparison Files Global Summany (Pass/Fail) Report				
C:\Users\jeremy.pangilinan\AppData\Roaming\OTI\ETAPS\19.0.0\GlobalSummaryRer Browse View				
D:\PECAN2-FG1-ADMS-REL\DBCompareInstr.sdf Browse View				
< V > Help OK Cancel				

工程向导编辑器

2.13 输出数据比较程序

输出数据比较程序(DB比较程序)是一个控制台,用于按照第三 个SDF文件(指令数据库)的指示比较两个SQL Server 压缩数据库 文件(SDF)文件。此控制台旨在与ETAP中的案例进行交互,以允许 将当前ETAP输出数据库结果与基准输出报告数据库的结果进行比较。 基准结果可以使用先前版本或相同版本的ETAP生成。

Compare Output		
Database Comparison		
Selected Report		
D:\Pecan64Rel\Example-ANSI\LFreport.LF1S		View
Penchmark Pencet		
D:\Pecan64Rel\Example-ANSI\Output\LFreport.LF1S	Browse	View
Comparison Results		
Deviation Report		
D:\Pecan64Rel\Example-ANSI\LFreport_DBCompare.sdf	Browse	View
Generate Excel Plot Comparison		
	Browse	
Global Summary (Pass/Fail) Report	_	
C:\OTI\ETAPS\14.0.0\GlobalSummaryReport.sdf	Browse	View
Clear		
DB Compare Options	Plot Compare Op	tions
✓ Skip Records That Pass with Deviation < 0.1 %		•/
	Max Plot Diff	10
Skip Project information	Total Plot Diff	%
Compare All Database Tables (Global)	Fotor Flot Dim	
Instructions Database		
D:\PECAN64REL\DBCompareInstr.sdf	Browse	View
Command-Line Instructions		
Remarks		
Hala Clear Clear	Cancel	
Heip Clear Close	Cancel	

Compare Output Editor (DB Compare Console)

2.14 编辑器

ETAP 编辑器被称为"智能编辑器",因为他们包含以下功能:

- 最少的输入数据需求
- 自动替换典型数据
- 数据多页面布局
- 检查所有可能相关的电气参数
- 自动检查范围内每个数据字段的正确性
- 优化和尺寸调整
- 用户自定义数据字段
- 导航、撤销和查找命令
- 跟踪每个数据字段的更改
2.15 数据库

ETAP 根据厂家公布的数据提供用户可控的数据库

- 电缆 (NEC、ICEA和厂家公布的数据)
- 电缆防火涂层(厂家公布的数据)
- 防火电缆(厂家公布的数据)
- 电缆防火包(厂家公布的数据)
- 电机铭牌
- 电机模型(单笼式和双笼式电机)
- 电机特性模型
- 电机负荷模型
- 继电器 (厂家公布的数据)
- 重合闸 (厂家公布的数据)
- 电子控制器(厂家公布的数据)
- 低压断路器(厂家公布的数据)
- 高压断路器(厂家公布的数据)
- 熔断器 (厂家公布的数据)
- 过载加热器 (厂家公布的数据)
- 谐波(IEEE和厂家公布的数据)
- 电机过载加热器 (厂家公布的数据)
- 电池
- 可靠性指标库
- 中断成本库

- 50000多条保护装置时间-电流特性曲线
- 合并不同数据库的数据
- 使用报告管理器和Crystal报告将数据库数据导出到Microsoft Access文件

I Kale Vallere Circuit Bracker Library Editor

				Manufacturer designated model or class name						<mark>//40</mark>		
(ANS	SI Standard			Manufacture	r : ABB				
ANSI HV Breaker Library				Model	Std.	Cy	Continuous	Max kV	Rated Int.	Max		
Standard	Manufacturer		1	121PM20	SYM	3	1200	121	20	2		
ANSI	Alstom CutlerHammer		2	121PM20	SYM	3	2000	121	20	2		
O IEC	GE ITE Gould		3	121PM20	SYM	3	3000	121	20	2		
0.20	Powell +		4	121PM40	SYM	3	1200	121	40	4		
			5	121PM40	SYM	3	2000	121	40	4		
Edit Add D	elete Copy Help	Close	6	121PM40	SYM	3	3000	121	40	4 -		
										In the second secon		

高压断路器库选择器和编辑器

2.16 ODBC (开放式数据库连接)

ETAP 使用最新的行业标准 Microsoft®ODBC(开放式数据库连接) 组织和访问其数据库,允许 ETAP 使用任何可用的 ODBC 驱动程序的数 据库。

- 可在Microsoft Access、Oracle、SQL Server等中设置ETAP数据 库
- 可从第三方数据库管理器访问数据库
- 可将其他项目数据库集成到统一数据库中

ODBC 能够让您通过第三方软件(如 Microsoft Access)访问 ETAP 数据库。这有助于您管理数据,并提供数据从 ETAP 传输到其他媒介的简单方法。您还可有将其他字段(连同 ETAP 提供的值)插入到 ETAP 数据库中。

2.17 OLE 客户端

OLE 是一种程序集成技术,用户程序之间共享信息。包括 Microsoft Office 在内的许多 Windows 程序都支持 OLE 功能。在 ETAP 中,可以灵活地将地图、文本、电子表格和元文件等 OLE 对象嵌入单 线图中。

选择要放置在单线图上的 OLE 对象

2.18 转换为 EMF、WMF 和 DXF 文件

将 ETAP 单线图导出到增强型图元文件(EMF)、Windows 图元文件(WMF)、可扩展标记语言(XML)、原始图像格式(RAW)和 AutoCAD DXF 文件。这些文件可以导入到 AutoCAD、Microsoft Word 等中。.

An EMF File Generated by ETAP & Inserted here as a Picture

由 ETAP 生成的 EMF 文件&作为图片插入到这里

2.19 打印/绘制单线图

以下选项适用于每个显示图,包括复合电机和网络:

- 打印选项
- 打印机设置
- 缩放打印区域
- 打印坐标和滚动
- 用户自定义打印预览
- 批量打印

打印带有潮流结果和OLE对象的单线图预览

2.20 错误指示器

ETAP 提供五级错误检测。当您运行一个缺失数据或数据错误的 研究时,错误指示器便会显示错误。双击每个单独的错误消息,自动 找到并打开与错误消息原因相关联的设备编辑器。

Error	report for Study View	×
Error	706-01: [T2] XFMR positive-sequence X/R equals 0.	-
1		-

Run Time Error Viewer with Direct Link with the Reported Errors

2-Winding Transformer Editor - T2							
Reliability Remarks Comment					nt		
Info	Rating	Impedance	Tap Grounding Sizing			Protection Harmonic	
121	12 MVA ANSI Liquid Fill Other 55/65 C					34.5	13.8 kV
r Impe	dance %Z tive 6.9 Zero 6.9		R/X 99999 0.043	%X 0 6.893	%R 6.9	Z Base	MVA 12 her 55
	<u></u>						

双击错误后激活的转换器编辑器

2.21 应用程序消息记录器

使用应用程序消息记录器跟踪 ETAP 的使用和访问。它跟踪谁打 开了一个项目,他们拥有什么级别的访问权限,以及他们在项目中的 时间。

Message Log	▼ 4	x
12-28-2018@13:56:36 Star Message-01: [OCR4] Fault: SG - LG - disabled.		~
12-28-2018@13:56:36 Star Message-01: [OCR4] Fault: 3P (Min) - disabled.		
12-28-2018@13:56:36 Star Message-01: [OCR4] Fault: LG (Min) - disabled.		
12-28-2018@13:56:36 Star Message-01: [OCR4] Fault: G - LG (Min) - disabled.		
12-28-2018@13:56:36 Star Message-01: [OCR4] Fault: SG - LG (Min) - disabled.		
12-28-2018@13:56:36 Star Warning-01: [T2] Device reference kV is not the same as plot reference kV.		
12-28-2018@13:56:36 Star Warning-01: [OCR4] Phase - Trip element reference kV is not the same as plot reference kV.		
12-28-2018@13:56:36 Star Warning-01: [OCR4] Negative Sequence - Trip element reference kV is not the same as plot reference kV.		
12-28-2018@13:57:22 DBVersion = 100051 Formats Directory = Formats1800		
12-28-2018@13:57:22 DBVersion = 100051 Formats Directory = Formats1800		
12-28-2018@13:59:25 DBVersion = 100051 Formats Directory = Formats1800		
12-28-2018@13:59:25 DBVersion = 100051 Formats Directory = Formats1800		~

消息记录器

2.22 输出报告管理器

为不同的分析案例提供超过 250 份 Crystal 报告,包括以下部分:

- 完整报告
- 输入数据报告
- 结果报告
- 总结报告
- 用户自定义报告内容

Load Flow Report Manager		X					
Complete Input Result Summary							
Adjustments Branch Bus Cable Cover Equipment Cable High Voltage DC Link Impedance Line Coupling Reactor	4 III >	 Viewer PDF MS Word Rich Text Format MS Excel Set As Default 					
Output Report Name							
LF-Report							
Path							
D:\Pecan64Rel\Example-	D:\Pecan64Rel\Example-ANSI						
Неір		Cancel					

2.23 Crystal 报告

ETAP 使用 Crystal 报告程序来生成输出报告。Crystal 报告是一种用户自定义报告模式和全彩显示质量的报告工具。ETAP 为各类分析,数据库数据和列表提供大量不同报告模式。

在 ETAP 中可用 Crystal 报告。用户可使用 Crystal 报告程序创 建报告格式并修改现有格式。Crystal 报告是 Business Objects 的 产品。获取这个软件的详细信息,请前往: http://www.businessobjects.com。

2.24 列表报告管理器

根据 Crystal 报告, ETAP 可根据如下不同选项,提供诸如母线, 支线,负荷和电缆等的报告:

- 基础版本和修订版本
- 通电/断电设备
- 回收站里的设备.

Branch Bus Load	
2W-Transformer Schedule 3W-Transformer Schedule Cable Data Schedule Line Data Schedule Reactor Schedule	Configuration Include Elements Normal Definition Base / Rev Data Dumpster
	Base Revision Base + Revision Viewer DC

eport		/1+ 010	•							
Contract OTI-12345 Engineer: Operation Fileneme: Example-A	678 Technology, Inc. NSI	Ca	hle Data	Schedule				R	evision: E onfig N	Base Normal
This info is printed of	on every output report, 1 st remark kr	ue. (120 characte	s 2)							
Cable ID	Library	Status	Size	Length	#/ph	T (C)	R	х	Y	Impedance Unit
Cablel	NEC, Rubber 2, 15, 100, Aluminum, 1°C, Non-Mag., 75, 1000 ft,60, English, 20 90 90 40 90	Energized	4/0	120.00 ft	1	75	0.10496	0.04660	0	Ohms per 1,000 ft
Cable10	KERITE, EPR, 15, 100, Copper, 1/C, Magnetic, 90, 1000 ft,60, English. 20 90 90 40 90	Energized	2/0	567.00 ft	1	90	0.10800	0.09500	0	Ohms per 1,000 ft
Cablel 1	ICEA, Rubber, 0.6, 100, Copper, 3/C, Magnetic, 75, 1000 ft,60, English, 20 90 90 40 90	Energized	4/0	259.00 ft	1	75	0.06400	0.03810	0	Ohms per 1,000 ft
Cable13	NEC, Rubber 2, 1.0, 100, Copper, 1/C, Magnetic, 75, 1000 ft,60, English, 20 90 90 40 90	Energized	350	67.000 ft	1	75	0.03900	0.05000	0	Ohms per 1,000 ft
Cable14	ICEA, Rubber, 1.0, 100, Copper, 3.C, Magnetic, 75, 1000 ft,60, English, 20 90 90 40 90	Energized	250	430.00 ft	2	75	0.05520	0.03790	0	Ohms per 1,000 ft
Cable15	ICEA, Rubber, 1.0, 100, Copper, 3.C, Magnetic, 75, 1000 ft,60, English, 20 90 90 40 90	Energized	4/0	100.00 ft	1	25	0.01554	0.00010	0	Ohms per 1,000 ft
Cablel6	ICEA, Rubber, 1.0, 100, Copper, 3/C, Magnetic, 75, 1000 ft,60, English, 20 90 90 40 90	Energized	4/0	200.00 ft	1	25	0.01554	0.00010	0	Ohms per 1,000 ft
Cable18	ICEA, Rubber, 15, 100, Copper,	Energized	2	1200 ft	1	75	0.20200	0.05240	0	Ohms per 1,000 ft

电缆一览表样本

ETAP 演示版的功能特点与限制条件

Etap 演示版不同于商业版, 它较于商业版有部分限制:

- 演示版的试用期为30天(可通过您的返回码与ETAP联系来延长试 用时间)
- 可创建(编辑)最多12条交流母线和10直流母线的工程
- 可观看入门视频,示例工程以及其他操作视频(需要网络访问)
- 演示版仅限5次TCC演示
- 演示版禁用工程保存功能与打开现有工程功能、
- 演示版仅支持打印输出原始示例工程报告
- 单线图与曲线图的输出结果基于修改后的工程进行输出
- 演示版禁用数据交换功能
- 可以将组件添加至单线图中或修改单线图中的组件
- 演示版在配电板上有部分限制,例如禁用摘要页面,报表管理器 打印,库快速选择窗口和固定数量的电路。
- 演示版提供样本工程库,但是禁用库中的添加与复制功能 演示版在默认情况下可用的模块:
- 自动生成单线图
- 潮流
- 短路(ANSI标准, IEC标准, GOST标准)
- 继电保护配合

● Star-动作序列

可在演示版中激活的附加模块

可以通过请求新的演示版激活码来启用以下附加模块;返回码可在 ETAP 演示版对话框中找到;每台安装 ETAP 演示版的计算机,其返回码各不相同

- 交流弧闪
- 电机启动 (动态和静态)
- 谐波(潮流和频率扫描)
- 暂态稳定
- 不平衡潮流/断相故障
- 优化潮流
- 负荷分析器
- 直流潮流
- 直流短路
- 直流弧闪
- 蓄电池容量计算及放电
- 可靠性评价
- 最佳电容器位置
- 风力发电机和光伏阵列元件 演示版在不包含的模块
- 以下模块在演示中不起作用; 了解有关ETAP完全功能版本请联系 sale@etap.com

- 弧闪故障-高压弧闪
- 电缆载流量
- 电缆管理器
- 电缆拉力
- 电缆尺寸优化
- 应急分析
- 控制系统图 (CSD)
- 触电计算
- 实时电源管理系统
- 轨道牵引系统
- 故障模式分析
- 故障管理与服务恢复
- 地理信息系统 (GIS)
- GIS接口
- 接地网系统
- 智能GIS
- 辐照度计算
- 参数估计
- 功率计算器
- 保护导体尺寸选择
- 小信号稳定性分析
- Star Auto™保护与协调评估

- 开关优化
- 切换序列管理
- 模板
- 时域潮流
- 变压器
- 变压器抽头优化
- 输电线路载流量
- 输电线路的弧垂与张力
- UGS和Star规则手册
- 不平衡短路
- 地下电缆管道系统(UGS)/电缆热分析
- 用户定义的动态模型(UDM)图形逻辑编辑器
- 电压稳定性分析

3.ETAP 演示版安装

本快速安装文档旨在指导您完成 ETAP 演示版的典型安装。

ETAP 系统要求

操作系统(64位)

Microsoft Windows 10 pro

Microsoft Windows 8 和 8.1 (标准版、专业版)

Microsoft Windows 7 (家庭高级版、专业版、旗舰版)

Microsoft Server 2012&2012 R2(标准版)

Microsoft Server 2008 R2(标准版)(SP1)

其他软件要求

IE 10 或更高版本(或操作系统指定的最低版本级别)

ETAP 启动以下安装选项

Microsoft.NET Framework 3.5版(SP1)

Microsoft.NET Framework 4.0版

Microsoft.NET Framework 4.5 版

Microsoft SQL Server Compact 3.5 (SP2)

Microsoft Windows 更新(KB2670838)

Microsoft SQL Server 2012 Express 本地数据库(x64)

Microsoft SQL Server 2012 本机客户端 (x64)

Microsoft SQL Management Studio 2012 (x64)

PC 配置要求

64 位硬件

DVD 驱动, 10GB 硬盘空间

建议使用19英寸监视器(强烈建议使用双监视器)

建议显示分辨率-1920 x 1080

建议显示字体大小-100%-125%

推荐的硬件

Intel Core i5 或更高版本 - 2.0 GHz 或更高版本(或同等版本)

4 GB 内存

ETAP 演示版安装

安装 ETAP 演示版需要计算机管理员权限。

- 1. 关闭所有应用程序并将 ETAP 演示版 CD 插入 CD-ROM 驱动器或 从下载文件夹启动快捷方式。
- 2. 点击 ETAP Demo 开始安装。

 演示版的安装和使用受 ETAP 许可证授予和协议的条款和条件 的约束。在继续安装之前,必须接受这些条款。请单击"是" 按钮。

4. 为 SQLite 安装卸载旧版本的 DB 浏览器。

🛊 ETAP Demo			- 0	×
		etap	Demo	0
Setup Progress				
Processing: DBBrowserForSQLite				
			201	
DB Browser for SQLite Setup		\times		
DB Browser for SQI Do you want to un new one?	ite is already installed. install the old version be	efore installing the		
	Yes No	Cancel		
			Car	ncel

5. 单击欢迎屏幕上的下一步。

 输入 OTI 发送给您的代码。如果您没有收到或放错代码,您 可以拨打 949-900-1000 联系销售人员。

ETAP Demo	- 🗆 X
Installation Code Enter your installation code	Power System Enterprise Solution
 Collecting information Preparing installation Installing Finalizing Installation Convergence of Power & Intelligence 	This installation requires an installation code obtained from ETAP Contact ETAP or access www.etap.com to obtain one. Code:
	< Back Next > Cancel

信息窗口显示硬件和软件需求以及其他有用信息。单击"下一步"继续安装。

🛃 ETAP Demo	– – ×	
Information Please read the following text	Power System Enterprise Solution	
	System requirements for ETAP Demo	
Collecting information	ETAP Demo System Requirements	1
Preparing installation	Operating System (64-bit) Microsoft Windows® 10 (Home Premium, Professional, Enterprise)	
Installing	Microsoft Windows 7 (Home Premium, Professional, Ultimate, Enterprise) (SP1) Microsoft Windows 8 & 8.1 (Standard, Professional)	
Finalizing Installation	Microsoft® Server 2012 & 2012 R2 (Standard) Microsoft Server 2016 (Standard)	
Etap Demo Convergence of Power & Intelligence	Other Software Requirements Internet Explorer® 10 or higher (or minimum version level specified by the Operating System) ETAP launches the following installations: Microsoft .NET Framework v3.5 (SP1) Microsoft .NET Framework v4.0 Microsoft .NET Framework v4.5 Microsoft .NET Framework v4.6.2 Microsoft SQL Server Compact 3.5 (SP2) Microsoft Windows Update (KB2670838) Microsoft SQL Server 2012 Express LocalDB (x64) Microsoft SQL Server 2012 Native Client (x64) Microsoft SQL Server 2012 Native Client (x64)	
	< Back Next > Cancel	

安装程序要求在硬盘上安装 ETAP 演示版的目标文件夹的名称。
 默认的目标文件夹是 C:\etap demo。要在其他位置安装程序,
 请单击"浏览"按钮并选择或键入新的目标文件夹。

- 9. 选择"安装"开始安装 ETAP 演示版。
- 10. 单击"完成",安装即告完成。

11. 安装完成后, ETAP 演示版图标将放置在桌面上。

12. 要从计算机中删除 ETAP 演示版,请使用"控制面板"中的 "添加或删除程序"。

Settings			- 0	×
命 Home	Apps & features			
Find a sotting	2	12/13/2018		
Apps	ETAP 18.1.1	11.7 GB 11/29/2018		
IΞ Apps & features	ETAP Demo	6.20 GB 1/7/2019		
⇒ Default apps	18.1.1.26818			
印 <u>0</u> Offline maps	N	lodify Uninstall		
Apps for websites	ETAP License Manager 18.2.0 for 64	-bit Mach 32.0 MB 10/31/2018		
□ Video playback	Feedback Hub Microsoft Corporation	16.0 KB 9/7/2018		
T Startup	Get Help Microsoft Corporation	16.0 KB 11/1/2018		

教程

运行 ETAP 演示版

入门

双击桌面 ETAP 演示版快捷方式启动软件。

有关更多信息,请联系 sales@etap.com 或访问我们的网站 etap.com。

4. 演示版结构

本节介绍 ETAP 演示版的结构。该演示版允许对 ETAP 中的大多数 编辑和分析工具进行采样。

ETAP 演示版工程编辑器

运行 ETAP 演示版时将会显现这个窗口。并给您以下选项:

ETAP Demo Project			×
	Getting Started	Videos & Tutorials	-
etap Powering Success	Welcome to The Demo	ETAP Foundations	
Contract Getting Started	Example ANSI Project Make modifications to this ANSI project and run multiple studies.	Analysis Device Coordination	č
⊗ What's New	Example IEC Project Make modifications to this IEC project and run multiple studies.	View more videos	
Solutions	New Project	Solution Overview Videos	
	Create a project from scratch and run multiple studies.	Generation Generation Transmission	n
2	ETAP Mobile APP	Distribution Industrial	
	Available for free download from Microsoft® and Apple® App stores.	Low Voltage Rail - eTrax	n
	Get It from App Store	Wind Turbine Wind Turbine Photovoltaic Array & Sola Panel	r
ETAD 19 Dama			~

ANSI 工程示例

如果选择此项,将打开一个可运行 ETAP 所有模块的示例项目。 示例项目包含几个链接,允许您查看 ETAP 的入门文档。它还包含有 关单线图编辑功能的有价值信息。该工程所有符号和分析均基于 ANSI 标准。

IEC 工程示例

如果选择此项,将打开一个可运行 ETAP 所有模块的示例项目。 示例项目包含几个链接,允许您查看 ETAP 的入门文档。它还包含有 关单线图编辑功能的有价值信息。该工程所有符号和分析均基于 IEC 标准。

新工程

新工程选项允许您新建一个可以从头开始建立单线图的 ETAP 工程。您构建的系统最多包含 12 条交流母线和 10 条直流母线。您可以 对此新创建的项目执行所有已启用的分析,但无法保存所做的更改。 请参阅第 2 节,了解您可以执行或需要使用您的返回代码才能启用的 的分析列表。

视频和教程

您可以参考视频教程以开始操作 ETAP 演示版。视频包括 ETAP 基础,建模,分析,保护配合和弧闪。您可以在 ETAP 网站上找到更多视频。

解决方案概述视频

这些视频向您展示 ETAP 应用于不同的行业,如发电,工业,低 压,输电,配电,运输等。

59

5.界面图

下面提供的图片描述了 ETAP 的一般结构和用户界面

5.1 编辑模式

您可以在这里以图形方式添加、删除、重新定位和连接元件、放 大或缩小、关闭或打开显示网格、更改元件大小、更改元件方向、更 改符号、隐藏或显示保护设备、输入参数、设置操作状态等。

菜单栏包含菜单选项的综合列表。每个选项都会激活命令的下拉 列表,如运行文件、打印、数据库转换、数据交换、OLE 对象、项目 标准、项目设置和项目选项、库、默认值、注释字体、基础和修订数 据等。

工程工具栏

Project Toolbar 🔹	×
🖪 🚍 🚍 🖳 😹 🗈 🗈 🖲 🗨 🤤 😣 😣 🗠 🛏 🛤 🖬 👘 🥜 🗐 🗛 🤅	2
工机工具以有人工作在业田司公用但任持起的知识让业司经历	11
上程上具栏包含为许多常用功能提供快捷的按钮。这些功能包装	括:

创建工程、打开工程、保存工程、打印、打印预览、剪切、复制、粘

贴、平移、缩放、撤消、重做、文本框、网格显示、连通性检查、主题、获取模板、添加到 OLV 模板、超链接、功率计算器、查找和帮助。 主题工具栏

Theme Toolbar				-	r X
💠 ETAP (Default)	*	Phase	Ŧ	P	

主题工具栏包含的按钮允许您使用 ETAP 中的许多常用命令执行 快捷方式,以更改设备连接线、符号颜色和背景的颜色和线条样式。 主题工具栏由以下命令组成

- 主题管理器
- 主题名称
- 主题颜色编码
- 正常颜色
- 客户颜色
- 启用轮廓

工程视图

工程视图是一个树状图,其中包括与工程相关的显示图、配置、 分析案例、数据库和组件。在这里您可以创建和操作以下显示图、配 置和分析案例:

- 单线图显示图
- U/G电缆管道系统
- 接地网系统
- 电缆牵引系统
- 回收站

- 配置状态
- 分析案例

您还可以访问工程中存在的所有文件库和设备。

编辑工具栏

当您进入编辑模式时,编辑工具栏将处于运行状态。您可以单机 或双击选择,拖放交流、直流和仪表元件到单线图上。此外,还可以

- 查看和打印自定义的输出报告(文本和Crystal报告)
- 更改显示选项
- 访问计划报告管理器
- 添加新的接地网系统
- 添加复合网络和复合电机

5.2 分析模式

ETAP 直接从单线图中提供以下分析模式:

- 1. 潮流分析
- 2. 短路分析
- 3. 弧闪分析
- 4. 电机加速
- 5. 分析
- 6. 谐波分析
- 7. 暂态稳定分析
- 8. Star-保护配合分析
- 9. 直流潮流分析
- 10. 直流短路分析
- 11. 直流弧闪分析
- 12. 电池尺寸和放电计算

13. 不平衡潮流分析

14. 时域潮流分析

15. 不平衡短路分析

16. 电压稳定性分析

17. 最优潮流分析

18. 可靠性评估

19. 最佳电容器位置

20. 开关优化

21. FMSR分析

22. 切换顺序管理

23. 应急分析

24. 轨道牵引功率

25. Star系统

26. 地下电缆管道系统

27. 接地网系统

28. 电缆牵引系统

电缆和接地网分析以及电缆牵引计算分别可从地下电缆管道系统、接地网系统和电缆牵引系统研究中获得。

5.3 示例-电机加速模型

电机加速分析案例编辑器包含解决方案控制变量,预启动负载条件,电机启动事件以及输出报告的各种选项。该研究案例用于动态电机加速和静态电机启动研究。"电机加速分析案例"工具栏根据所选的"学习模式"进行更改。结果直接显示在单线图上。

6.教程.

本章旨在简要概述 ETAP 的一些功能。通过本系列教程,您将熟悉 ETAP 的许多关键概念和功能。每个部分都以交互格式提供,允许您按照本章所揭示的那样可视化每个步骤。

这些教程都是相互独立的,因此您不必担心一下子就被介绍到每 一个方面。只需选择你感兴趣学习的部分。各部分的细分如下所述。

第1节:如何构建和操作单线图

- 第2节:如何建立和运行潮流研究
- 第3节:如何建立和运行不平衡潮流研究
- 第4节: ANSI 和 IEC 短路研究简介
- 第5节:如何设置运行弧闪分析
- 第6节:如何设置和运行电机静态和动态启动研究
- 第7节:系统谐波分析的简要概述
- 第8节:如何模拟和分析暂态系统
- 第9节: 保护配合(STAR)模块基本操作概述
- 第10节:最佳潮流分析简介
- 第11节:如何设置和运行可靠性分析
- 第12节:直流潮流模块概述
- 第13节:如何进行直流短路研究并制作多个分析案例
- 第14节: 电池尺寸和电池放电介绍

第16节: 接地网系统的构建和运行研究

第15节:地下电缆管道系统模块概述

第17节:如何建立和建立电缆牵引系统

第18节:如何设置配电板系统并将其连接到现有网络

第19节:输出报告格式的详细说明

第20节: ETAP 数据库概述

双击桌面快捷图标开始运行 ETAP。

第一个教程教您如何创建一个小系统。对于本节,当选择演示工程窗口出现时您可以使用"新建工程"选项。对于其余的教程(star 除外),您应该使用"示例项目"选项。

ETAP Demo Project			×
A oton	Getting Started	Videos & Tutorials	^
	Welcome to The Demo	ETAP Foundations	
Cetting Started	Example ANSI Project Make modifications to this ANSI project and run multiple studies.	Analysis Device Coordination	i.
🛞 What's New	Example IEC Project Make modifications to this IEC project and run multiple studies.	View more videos	
Solutions	New Project	Solution Overview Videos	
	Create a project from scratch and run multiple studies.	Generation Generation Transmissio	n
	ETAP Mobile APP	Distribution Industrial	
	Available for free download from Microsoft® and Apple® App stores.	Low Voltage Rail - e Trax	M
	Constructed on the App Store Microsoft	Wind Turbine Photovoltaic Array & Sola Panel	ır
ETAP 18 Demo			~

6.1 创建单线图

本教程的目的是展示在 ETAP 中构建和操作单线图(OLD)的基础。 各种元件将添加到单线视图(OLV)中,并介绍设备编辑器。打开 ETAP 演示版选择"新建项目"选项开始此教程。

➤ 在 ETAP 中,想要创建或编辑单线图必须先进入编辑模式。点击模式工具栏上面的"编辑模式"按钮。

- ➤ 在交流工具栏中,通过点击"等效电网"按钮选择等效电网。 然后将鼠标移到 OLV 中,光标将变成等效电网。在 OLV 中的 单线图的任意地方单击鼠标放置等效电网。
 - ▶ 按照相同的步骤,插入以下元件,直到单线图显示如下:

▶ 您可以通过将鼠标指针放在母线的任一端来拉伸总线,直到 出现一个双箭头。然后单击并拖动到所需长度。

Bus3 0 kV

➤ 在单线图中连接元件。将鼠标指针放在元件的引脚上,它将 变为红色。然后单击并拖动到另一个元件的引脚。按照此步 骤连接一条线上的所有元件。在母线的情况下,整个元件图 形起连接点的作用。请注意,将电缆连接到变压器时,会自 动插入节点。

▶ 打开单线图的编辑器可以访问任何元件包含的数据。双击 Cablel 打开"电缆编辑器"。您可以单击编辑器中的任何选 项卡打开其各自的页面并只能在白底字段中手动输入数据。

2	2
· · ·	

able Edito	r - Cable2	A 88	92	2	0	•7 <		×						
Sizing -	Phase	Sizing - GND/PE	Reliability	Routing	Rer	narks	Comment							
Info	Physical	Impedance	Configuration	Loading	Am	pacity	Protection							
N	EC	Mag.	60 Hz	C	ode : 750									
E	PR	133 %	5.0 kV 3/C	CU 7	/50	▼ AW	G/kcmil							
1				_										
_ Info														
ID	Cable2						s l							
							<u> </u>							
From	Sub 3		▼ 4.16 kV	Revis	sion Data -									
То	Sub3 Swgr			Г		Deve								
						base								
Equipme	ent			Cond	lition									
	Tao #			s	ervice 🧕	In								
	idg #				0	Out								
					State As	s-Built	•							
1	Name													
Descr	iption			No. o	f Conducto	ors / Phase								
						1								
Length		Libr	ary	Conn	ection									
1	Length 222	ft 👻	Library	03	Phase									
Tolo			iak to Librany	01	Phase									
TOIL	adrice U	<i>'</i> •	and to bordry		111000									
				Librar	y Quick Pi	ick - Cable								×
	9 . 7	C-11-2	_		Lina	-	Trees	IAV.	%	#/0	land.	Sauraa	Install	*
		Cablez	•		Unit y		iype 🖕	× *	Class *	, #/C +	insui 🚽	Julice 4	, in Islan	*
				211	English	60	CU	5.0	133	3/C	EPR	NEC	Mag.	_ 11
				213	English	60	CU	5.0	133	3/C	Rubber	NEC	Mag.	
				214	English	60	CU	5.0	133	1/C	Rubber 2	NEC	Mag.	
				215	English	60	CU	8.0	100	1/C	EPR	*AmrCbl Mar	Mag.	
				216	English	60	CU	8.0	100	3/C	EPR	"AmrCbl Mar AmrCbl Mar	Mag.	
				21/	English	60	CU	8.0	100	3/C	EPR	AmrCbl Mar	Mag.	
				219	English	60	CU	8.0	100	1/C	EPR	KERITE	Mag.	
				220	English	60	CU	8.0	100	1/C	EPR	KERITE	Mag.	
				221	English	60	CU	8.0	100	3/C	EPR	KERITE	Mag.	-
					LLZF	Ampacitu	A/G Am	pacity	Link De	- P	Size			
					Ta	Tc RH	IO Ta	Tc	Length T	emp.	Pha:	se G/N	wG/kcmil	
					20	90 90) 40	90 1	000 ft 7	5	250		Augil Sizes	
											350 500		All Cia	
											/50	•	All Sizes	
									_					
							Help				None	Cancel		

- 单击信息页上的"设备库"按钮以选择电缆。然后单击"确定"退出"快速选取"窗口和"编辑器"窗口。选定电缆的工程特性现在输入到编辑器中。
- 您还可以改变单线图中元件的方向和外观。如果右键单击元素图形,将显示选项列表。例如,您可以通过右键单击它来旋转电网或负载,选择"方向",然后选择旋转角度。

▶ 只需右键单击元件图形,即可选择多种选项。

填充复合网络与填充第一个单线图非常相似。要打开复合网络,请双击其图形。该窗口的标题是 OLV1 => Network1。您可以通过双击网络 OLV 内的任何位置或右键单击其图形并选择"属性"来更改其名称。连接下面显示的元素以创建如前所述的单线图。现在,为了使这个单线图看起来更整洁,您可以右键单击并选择隐藏未连接的引脚。

温馨提示:

在一个元件按钮上双击,可以多次拖动并在单线图上放置相同拖 动次数个该元件。当您想要更换元件放置时,只需按下"Esc"按钮 即可。

通过单击项目工具栏中的相应按钮,可以放大^Q、缩小^Q和缩 放至适应 OLV 页面 ^Q。

通过右键单击元件并选择要更改的属性,可以更改元件的尺寸大小、方向和符号标准。

使用复合网络有助于单行单线图的管理。

在单线图中添加保护装置

▶ 首先确保要添加保护装置的元件之间有足够的空间。在单线

图中添加保护装置并不需要删除连接元件的行,而是将保护 装置插入到您要插入的地方。保护装置将自动连接到线路。 按照此步骤添加其余的保护装置并在单线图中显示。

色。

➤ 在 ETAP 中创建单线图既快捷又简单。一旦完成,您就可以充 分利用 ETAP 提供的所有强大工具。

6.2 潮流分析

本教程的目的是向您介绍潮流分析模块的使用。它还将提供一个 如何使用变压器 LTC 调节总线电压以及 ETAP 如何标记过载情况的示 例。您可以使用"Example Project"选项来辅助本教程的学习。

单击工具栏上的潮流分析按钮切换到潮流分析模式。现在, 您可以通过单击潮流工具栏上的运行潮流按钮来进行研究。 如果选择了"Prompt",系统将提示您输入输出报告的名称。 稍后,您将学习如何通过更改潮流研究案例编辑器中的选项 来定制您的研究。

➤ 研究结果可以在 OLD 上看到。在显示选项中,可以修改 OLD 上显示的信息。要获得更详细的结果,可以查看输出报告。

- ➤ 要查看任何过载问题,只需单击潮流工具栏上的报警视图按钮。将打开一个窗口,其中包含尺寸太小的设备列表。请注意,ETAP 演示版禁用了警报视图按钮。
- 注意, Bus1的工作电压为 97.94%。这导致总线在警报视图窗口中被标记为略微欠压。可以在潮流分析案例编辑器中更改标记条件的条件,这将在下一节中讨论。我们现在将使用变压器编辑器的母线电压调节功能来更改我们的潮流结果。
- ➢ ETAP 允许应用自动 LTC 设置来调节直接或间接连接到变压器的母线。例如,我们可以使用变压器 T4 以 100%的额定电压调节 Bus1。双击图形打开 T4 的编辑器。在分接头选项卡上,

2.	-Winding T	ransforme	r Editor - T4					X	ſ
		Reliability		Re	marks		Commen	t	
	Info	Rating	Impedance	Тар	Grounding	Sizing	Protection	Harmonic	
	1.5 MV/	A ANSI Liq	uid-Fill Other 55	5/65 C			4.16 ().48 kV	
	- Fixed Ta	Þ			LTC / Volta	age Regulato	or		
		% Тар	kV Tap	Per Unit Tum Ratio	A	/R	Manual or Operating Tap	Real-Time Scanned	
	Prim	0	÷ 4.16	1	Prim.	LTC	0	0	
	Sec	0	0.48	1	Sec.	LTC) 0 (0	
	-Power St	ation							
	🔽 Unit	Transforme	r for Generator	Gen1		•	Tap Optimizat	ion	
					L	oad Tap Ch	anger	1.0	x
						Regulated	Bus		
						Bus ID	Bus1		•
						Voltage Co	ontrol	Line of C	0.025 %
						Voltage	100 %	Lower E	Band 0.625 %
						Тар			Time Delay
	e e	∽ ≪	T4			% ·	ap kV Ta		Initial
Ĺ						Max	10 4.57	- 6 #of	U
						Step	0.625 0.02	Taps 6 33	
							Help	OK	Cancel

启用(选中)一次绕组上的 Auto LTC 框。

- ▶ 单击 LTC 框打开 LTC 设置窗口,然后将调节母线 ID 更改为 Bus1。单击确定以同时执行 LTC 窗口和"变压器编辑器"窗 口。
- ▶ 现在,您可以再次运行潮流研究,同时注意 Bus1 的电压。单 击潮流工具栏上的运行潮流按钮。

▶ 请注意, Bus1 的电压现在处于所需 100%调节值的分接步骤内。这只是 ETAP 潮流模块的许多功能的一个示例。

通过潮流结果分析器,您可以在一个屏幕中查看各种潮流研究的结果,以便分析和比较不同的结果。您可以比较有关项目的一般信息的结果或更具体的信息,例如潮流研究中的母线,支线,负载或来源中包含的结果。潮流结果分析器是一种节省时间的工具,允许您在同一目录中的单个显示中比较和分析来自不同项目的不同报告。

6.3 不平衡潮流分析

本教程的目的是向您介绍不平衡负载流分析模块的使用。它还将 提供一个关于大型单相负载如何影响平衡三相系统的示例。您需要使 用返回密钥代码联系 OTI,以便激活此模块。您可以使用"Example Project"选项来辅助本教程的学习。

单击工具栏上的不平衡潮流分析按钮切换到不平衡潮流分析 模式。现在,您可以通过单击不平衡潮流工具栏上的运行不 平衡潮流按钮来进行研究。如果选择了"Prompt",系统将提 示您输入输出报告的名称。稍后,您将学习如何通过更改潮 流研究案例编辑器中的选项来定制您的研究。

woue																• •
	₽ /	À 🦩 🗠	₩ Mr	5	±₽ ±∕	آ ھ '	÷-		£	5	- ()	≭	- 3	1.	∑ N-2	ø
								PQ Sv Uu Ar	nbalanced Loa witch the curre nbalanced 3-P nalysis Mode.	ad Flow Anal ent presentat Phase Load Fl	ysis ion to ow					
Output File	e Name					Unbal	anced Loa	d Flow								×
N				_		P q⊭ q←	×) 👍 🗎	dt 👰 y	pif Amp %	۰ ۷ P	8	¢	^{\$⊘} } 3	₽ ₽ ₽ ₽ ₽	A ALA
Name	Help	ОК	Cancel					Alert Vie Display	ew alert view							
					P→ v v	Run Unb Run Unb calculatio	oalanced Lo oalanced Lo on	bad Flow		Display Op Unbalance	ptions ed Load F	low displ	ay option	s		

Results AC AC-	DC Colors
Voltage Unit	Show Units
Voltage	Power Flows
Bus Mag.	MVA 🔻
Bus Angle	⊚ MW +jMvar
🔲 Load Term. Mag.	🔘 MVA 📃 % PF
© L- N	Amp Angle
© L-L	Flow Results
	📝 Branch
⊂Load Term, Base kV →	Source
Load Rated kV	V Load
Bus Nom. kV	Composite Motor
	Composite Network
Voltage Drop	Neutral
Line / Cable	Branch Losses
Load FDR	MW +jMvar
Average / Phases	Meters
Average Values	Ammeter
All Phases	Voltmeter
All Sequences	Multi-Meter
Help	OK Cancel

▶ 研究结果可以在 OLD 上看到。在显示选项中,可以修改 OLD 上显示的信息。要获得更详细的结果,可以查看输出报告。 从显示选项中选择以下选项: 入门

- ➤ 要查看任何过载或不平衡问题,只需单击潮流工具栏上的报 警视图按钮。这将打开一个窗口,其中包含尺寸太小的设备 列表以及具有不平衡条件的设备。请注意,ETAP 演示版禁用 了警报视图按钮。
- ▶ 请注意,系统平衡良好,从每相的电压和电流值可以看出。
- ▶ 通过改变电机 Syn1 (1250 Hp)从三相到单相的连接,将引入 系统不平衡。打开 Syn1 电机编辑器并进行如下更改:

84

Starting	Mode	Cab	le/Vd	Cable Am	np	Protec	tion	R	eliability	Remarks	Comment
Info	Namep	late	Model	LR Mode	el	Inertia	Excite	er	Load	Start Dev	Start Cat
1 12	250 HP	13.2 k	V						1-3/C	4 AWG/kcmi	il 15 kV
Info ID S	ìyn1							Rev	/ision Data		S
Bus [Sub2A				•	13.8 kV				Base	
Equipn	nent							Con	dition		
Des	Tag # Name cription	001 Syn1						Se	ervice 🖉) In) Out ws-Built	•
Dat	a Type	Estima	ate	•				Cor @	nection 3 Phase) 1 Phase	Quantity	
	Priority	Critica		•						Quantity	
Demar Conti	nd Factor inuous		Intermitter	t	Spar 0	ne %		Cor S	figuration	Normal	•
-Voltage Min. T	e Limit (M 'ransient	otor S 80	tarting Only	y)							

再次运行不平衡潮流并检查结果;请注意,在系统的不同区域存在电流和电压不平衡,这在最初的(平衡)潮流情况下是不存在的。这只是 ETAP 不平衡潮流模块的许多特性的一个例子。

DC System

6.4 短路分析

本教程的目的是介绍 ETAP 的短路分析模块,并提供有关如何运行 ANSI 和 IEC 短路计算的说明。此外,还将简要介绍研究案例编辑器和报警视图功能。您可以使用"示例项目(ANSI)"选项来辅助本教程的学习。

运行短路分析

▶ 从模式工具栏中,单击短路分析按钮选择短路模式。

运行短路分析将生成输出报告。在分析案例工具栏中,您可以选择输出报告的名称作为已定义的名称或Prompt。如果选择Prompt,则在运行短路分析之前,系统将提示您输入报告

名称。

➤ 从分析案例工具栏中,单编辑分析案例按钮。将打开路分析 案例编辑器,允许您更改计算标准和选项。在"息"页面中, 选择要发生故障的单母线或多母线。单击除 Sub3 之外的所有 母线,然后选择[~]Fault >>将它们置于非故障类别中。Sub3 现 在应该单独出现在故障类别中。完成后单击确定。

Study Case	▼ ×
🚔 💼 ANSI Duty 🔹 🧮 Prompt	Cable
년 Edit Study Case Edit the currently selected Study Case	Short Circuit Study Case
Note: The faulted bus, Sub3, will be shown in dark red color on the one- line, indicating that it will be faulted.	Info Standard Adjustment Alert Study Case ID Transformer Tap 1-Ph/Panel/1-Ph UPS Subsystem ANSI Ducy Adjust Base kV Calc. Load Terminal Fault Calc. Load Term. SC Use Nominal Tap Equip. Cable & OL Heater Include Impedance for: Level MV Motors MV Motors Substance MV Motors Substance
⊕ Helpful Tips You can also assign a bus to fault by right-clicking on a bus on the one-line and selecting Fault or Don't Fault.	Bus Selection Fault Don't Fault Don't Fault Bus1 Bus2 Bus23A LVBus Main Bus MCC1 Sub2A Sub2A Sub2B Study Remarks Second line of remarks for "ANSI Duty" study case.
	ANSI Duty

- ▶ 现在,您可以通过单击 ANSI 短路工具栏上的运行三相短路计 算按钮来运行短路分析。如果在分析案例工具栏中选择 Prompt 作为输出报告,系统将提示您输入输出报告的名称。
- ▶除了可以在 ANSI 标准设置下执行的 3 相 ANSI 之外,还有四种其他类型的研究。此外,可以执行根据 IEC 标准组的三项研究。ANSI 方法是短路研究的默认值,但这可在短路研究案例编辑器的标准页面中更改。ETAP 支持符合 GOST R53745 标

准的短路计算新方法。.

查看结果

- ▶ 短路计算结果显示在单线图上。更改短路显示选项中的设置 可以修改单线图上显示的结果及格式。
- ▶ 请注意, 断路器 CB9 和 CB18 现在为洋红色。此标志表示已以 某种方式超出设备功能。单击 ANSI 短路工具栏上的警报视图 按钮以查看标记的设备(请注意,演示中禁用了警报功能)。

Short Circuit An	alysis Alert Viev	v - Output Repo	ort: ANSI-4Cycl	e		×
Study Ca	se: ANSI Duty			Data Revision:	Base	
Configuratio	on: Normal			Date:	09-08-2015	
📃 Zone Filter		🔲 Area Filter		📃 Region F	ilter	
1 🖨 🗌	•	1	•	1 💌		•
		Cr	itical			
Device ID	Туре	Condition	Rating/Limit	Operating	% Operating	
CB15	LV CB	Interrupting	22 kA	22.792	103.6	Ξ
CB28	LV CB	Interrupting	18 kA	18.63	103.5	
Fuse1	Fuse	Interrupting	10 kA	23.856	238.6	Ŧ
		Ма	rginal			
Device ID	Туре	Condition	Rating/Limit	Operating	% Operating	
						I

➤ 要查看输出报告,请单击短路工具栏中的报告管理器,然后 转到结果页面并选择短路报告。.

3-Phase SC Report Manager	×	2 () н ч ь н 8	/8+ M Q. •		-	-					-	-	
plete Input Result Summary		Ē											
Load Terminal SC Report Strott Pircuit Report	Verwer PDF MS Word Rich Text Format MS Excel Set As Default	Project: Example Location: Irvine, Calife Contract: OTI-1234561 Engineer: Operation Te Filename: Example-AN	mia 18 chnology, Inc. SI	Stu	ET 14.) dy Case	ANSI Du	ty			Pa Di SI Ri Ci	ge: S ate: C N: I rvision: I onfig.: I	9-08-201 ETAP-OT Base Normal	5 I
Output Report N ANSI-4Cycle	Name de la constante de la con	This info is printed on eve Second line of remarks for	ry output report, 1st remain r "ANSI Duty" study case	: line. (120 characte	rs)								
Path D\Pecan64Rel\Exan Help OK	mple-ANSI Cancel	3-phase fault at bus. Prefault voltage = 14.0	3-phase fault at bus Sub2B Prefault voltage = 14.076 kV = 102.00 % of nominal bus kV (13.800 kV) = 102.00 % of base (13.800 kV)					I.	5 to 4 Cyr	tle			
		From Bus	To Bus	% V	kA	kA	Imag.	kA Symm	% V	kA	kA	Imag.	kA Symm
		Sub2B	Total	0.00	0.306	-11.376	37.1	11.380	0.00	0.272	-11.124	40.9	11.128
		Bus6 #T1~	Sub2B Sub2B	0.03 85.78	0.027 0.195	-0.091 -7.688	3.3 39.4	0.095 7.690	0.00	0.000	0.000	3.1 39.5	0.000 7.682
		Gen1	Sub2B	102.00	0.065	-3.136	48.0	3.137	102.00	0.065	-3.136	48.0	3.137
		Mtr2	Sub2B	106.64	0.018	-0.461	25.0	0.462	106.64	0.012	-0.308	25.0	0.308
		Sub23	Bus6	2.96	0.027	-0.091	3.3	0.095	0.01	0.000	0.000	3.1	0.000
		#Main Bus	T1~	\$7.00	0.075	-3.058	40.8	3.059	86.91	0.076	-3.062	40.3	3.063

修改报警视图设置

> 要查看或修改报警设置,请打开短路分析案例编辑器中的报 警页面。选中边缘框并将限制更改为70%。此外,单击自动显 示按钮,然后单击确定。当选中边缘框时,所有已超过此限 制但仍低于100%额定值的设备将显示在边缘类别的警报视图 中。超过100%额定值的设备将始终被标记,并显示在报警视 图的关键类别中。

Short Circuit Study Case			X
Info Standard Adjustment Alert			
Alert	Critical	Marginal	
Bus Bracing	100 %	70 %	
Protective Device Capability	100 %	70 %	
	1		
	Auto Display		

➤ 现在按照上面使用的步骤再次运行相同的短路分析。请注意, 一旦计算完成,报警视图窗口将根据对短路分析案例编辑器 中报警页面所做的更改自动打开。请注意,其他保护设备条 件出现在边缘警报视图中。并且短路结果不会改变。

➢ ETAP的短路和潮流模块的报警功能是在您选择合适设备规格的快捷方法之一。

6.5 弧闪分析

本教程的目的是介绍 ETAP 的弧闪分析模块,并提供有关如何设置弧闪(AF)计算的说明。 您可以使用"示例项目(ANSI)"选项来辅助本教程的学习。

有两种方法可以执行 AF 计算:

● 为所有母线运行全局 AF 计算(全局 AF 计算)

▶ 单击模式工具栏上的弧闪分析按钮,切换到弧闪分析模式。

File Edit View Project Defaults RevControl Library Warehouse Rules Real-Time DataX Tools Window Help i 🖪 🗃 🔚 🕼 i 🐰 🗈 🗈 👌 🔍 🔍 🥺 🖉 🕼 🤝 🔛 🖬 🔛 📾 🖬 🕮 👫 🖉 🖉 👘 Example Default 💌 🛄 🥒 🛃 📮 🤅 🍘 Device Settings - ANSI Phase 🗉 🗈 🗈 💭 😓 😺 🖉 1 34.5 🛛 🗤 🐥 1 🗮 👬 🏹 🏚 1 🗳 🗳 Study View
 Study View - + ジ チ 🗛 🏕 ヘッ 🛝 🐚 ジ 🗗 ジ 🎒 🏕 米 チ 🏒 İ N-2 🥔 😓 Arc Flash Switch the current presentation to Arc Flash Mode.

在任何母线上使用快速事件能量计算器

这是获得一些快速 AF 结果和制作标签的最简单方法。以下步骤说明如何完成此操作:

ETAP 电弧闪具有典型的设备间隙和 X 系数,内置在母线的额定值页面中。您可以利用这些典型值执行快速弧闪计算。打开母线1的编辑器,转到总线的额定值页面,选择该总线代表的设备类型。这可以是封闭设备,如 MCC、开关设备或露天设备,即不封闭在盒子中。选择设备类型后,单击"典型数据"按钮选择典型间隙和边界值。这将带来所有必需的间隙和 x 因子信息以及 NFPA 70E 定义的接近边界。要更弧闪光分析数据和冲击危险分析数据,请按数据选项按钮。

us Editor - Bus1			×
Harmonic	Reliability	Remarks	Comment
Info Phase V	Load Motor/Ger	n Rating	Arc Flash Protection
0.48 kV 1200 Amps			Symmetrical 0 kA
Standard ANSI IEC	Type Switchgear	•	Enclosure Isolation
Continuous 1200 - Amp	Bracing Asymm.ms 0	✓ kA	Symm. ms 0 🗸 kA
Gap Between Condu Orientation Ve Conductor Type Co	ctors / Buses 32 ertical	mm [Distance X Factor 1.473 Open Tips
Shock Protection © Limi Print on Label © Limi	ted Approach Boundary ted Approach Boundary	10 ft	Exp. Movable Conductor
Restric	ted Approach Boundary	1 ft	Typical Data
Insulating Glove Class	00 V-Rating	500 VA	Data Options
Shock Hazard when	covers removed ate Arc Flash and Shock I	Protection Data	•
🖹 🛍 🔊 🔏 Bus1		• >	

*转到弧闪页面并选择工作距离。根据电压水平和设备类型自动填充该距离。工作距离定义为从人的躯干和面部到通电设备的距离(对于低压设备通常为18英寸)。您还可以定义设备馈线的系统接地配置,即变压器接地/电源接地,如固定接地或三角形。如果您不知道系统接地,假设系统未接地将产生默认结果。您可以从下拉列表中选择默认的用户定义系统

接地。ETAP 还可以配置为自动确定系统接地。

- ▶ 输入可用的用户定义螺栓故障电流。如果您知道保护装置清除电弧需要多长时间,请在用户定义的电弧故障清除时间
 (FCT)中输入此信息。
- ➤ 从报表管理器中选择所需的弧闪标签模板,然后单击确定。 将打开 Crystal 报告查看器窗口,其中包含可以打印的标签。 总母线弧闪页面允许您立即获得弧闪结果。

Bus Editor - Bus1		
Harmonic Relability Remarks Comment Info Phase V Load Motor/Gen Rating Arc Rash Protection		
0.48 kV 1200 Amps Symmetrical 0 kA	ANSI Arc Flash Report Manager	
Disable Update Method IEEE 1584-2002	Label-Spanish Result Summary	ADANGER
Bus Fault Current 28.02 kA 29 kA	Complete Input Label-English Label-French Label-Portuguese	09-08-2011
Bus Arcing Current (Ia) 14.85 kA 15.286 kA		
Source PD CB22	3.5X7 Danger1-Bus Viewer	42-2
Source PD Arcing Current 14.85 kA Fixed FCT	3.5X7 Danger2-Bus	
Fault Clearing Time (FCT) 0.175 Sec 0.1 Sec	3.5X7 Danger2-PD MS Word	
Grounded Grounded •	3.5X7 Waming 1-PD © Rich Text Format	
Incident Energy 5.661 cal/cm ² 3.335 cal/cm ²	3.5X7 Waming2-Bus 3.5X7 Waming2-PD	Arc Flash and Shock Hazard
Arc Rash Boundary 5.732 ft 4.002 ft	3X3 Brady-Bus Set As Default	
User-Defined Level C PPE Level Level B PPE Level		Arc Flash Boundary 5.7 ft
Working Distance 24 inch 24 - inch	Output Report Name	Working Distance 24 in
Alerts	AF-Decay	Lavel C
Allowable Energy 10 cal/cm ² Energy Level Level D	Dath	Livia C
TCC Plot Energy TCC Plot Arcing Current	rau	Shock Hazard Voltage 480 V
Ibf Ia Ia Ia	D:\Pecan64Rel\Example-ANSI	Limited Approach 3.5 ft Restricted Approach 1.0 ft
Calculated Over-Defined		
User-Defined Energy		Equipment: Busl
All Energy Categories User-Defined 0 kA		

设置和运行全局弧闪分析

上一节描述了生成快速 AF 结果的简单方法。但是,母线计算器 已经过简化,当您需要对数百个故障位置进行分析时,母线计算器效 率不高。为此,您需要设置全局 AF 计算。

如果您使用母线上的快速入射能计算器或使用全局 AF 计算,则 需要相同的输入数据;但是,在ETAP 中,有更快速,更简单的方法来 定义计算所需的输入数据。

▶ 打开弧闪计算研究案例并转到 AF 数据页。在此页面中,您可以全局定义设备导体之间的间隙、工作距离和全局 AF 计算要

使用的其他 AF 参数。这将为您节省大量时间,因为您只需要 定义每个母线所代表的设备类型。下图显示了全局 AF 计算的 建议设置:

💱 Arc Flash Study Case	×
Info Method Clearing Time Parameters Adjustr	ment SC Standard Alert
Bus Gap, X-Factor & Working Distance O Individual (Bus Editor) O Global (Arc Flash Analysis Data) Typical IEEE 1584 2002 O User-Defined Edit Incident Energy Levels NFPA 70E 2000 NFPA 70E 2004 NFPA 70E 2009 NFPA 70E 2012 to 2018 / User-Defined Edit/Approve PPE	Arc Rash Boundary
System Grounding One-Line Diagram Connection User-Defined (Bus Editor) Update Grounding to Bus AF Page 	Global Voltage-Rated Glove Class ASTM D 120-14a User-Defined Edit Y New Delete Help OK Cancel

通过访问项目\设置\弧闪\菜单,可以修改或查看每组输入数据参数的全局定义,如下所示:

 \equiv

Proj	ect Library Warehouse	Rules	D	efaults Tools	RevControl	Real-Time	Window	Help			
	Information		81	n al 🖴 🖻	7 🏢 🛄 🕤	8 🔳 🕯	4 🕜 📮	ETAP	(Default)		-
	Standards		Viev	w 👻 🖌	- Normal	-	. 🔹 📮 🗄	🗿 Impedan	e Diagram		- 🗄
	Settings	•		Loading and	Generation Cate	gories	Q P	ur 🖌	V	P Q	(*)-
	Options			Avg Temp and	I Humidity		د <u>۲</u> م	☞ ~~	\supset	<u> </u>	~ ,~
	Mutual Coupling Group DC Control Cable Schedule.			Duty Cycle Ca Starting Categ	tegories gories						
	AC Control Cable Schedule.			Load Priority							
	Default Calendar			Data Type User-Defined	Fields						
AC	CSD Control Cable			Cable Ampaci	ty App. MF						
	CSD Devices			Panel Code Fa	actors						
I AC	CSD Push Button CSD Wires			Rate Schedule	2						
Batt	tery - 1			Fuel Cost Prot	ile						
] Bus	- 19 🗉			Emergency Ha	indling	•					
Bus a Cab	Duct - 1			Arc Flash		•	Inci	dent Energy L	evels		
Cap	acitor - 1			Star View Ref	erence kV		Arc	Flash Analysi:	Data	N	
Cha	irger - 1			Area, Zone &	Region		Sho	ck Risk Asses	sment Data	L	ç
Circ	uit Breaker, HV - 19 uit Breaker, LV - 15			GIS Coordinat	tes		Bus	Shock & Arc	Flash Typic	al Data	

建议您使用 AF 数据页图像中显示的选项,因为它们可以使用 最新标准的典型值。

➤ 在弧闪分析案例编辑器的信息页面上,选择要通过信息显示 故障的母线,如短路模块中所示。您也可以右键单击母线并 选择故障或非故障。

💡 Arc Flash Study Case		×
Info Method Clearing Time	Parameters Adjustment S	SC Standard Alert
Study Case ID	Transformer Tap	1-Ph/Panel/1-Ph UPS Subsystem
AF Decay	Adjust Base kV	☑ 1-Phase
Load Terminal Fault	O Use Nominal Tap	✓ Panel ✓ 1-Phase UPS
Equip. Cable & OL Heater	Report Contribution	Motor Contribution Based on
Include Impedance for:	Level	Motor Status
MV Motors	3	O Loading Category
LV Motors		() Both
Bus Selection Fault		Don't Fault
Bus1 Bus2 Bus23A LVBus Main Bus MCC1 Sub2A Sub2A Sub2B Sub 3 Sub3 Sub3 Swgr Sub22	 All Buses MV Buses LV Buses << Fault ~Fault >> 	Bus3 Bus4 Bus5 Bus6 Bus7 Bus8 Bus9
Study Remarks Second line of remarks for "AF [Decay'' study case.	
< AF Decay	V > Copy Ne	ew Delete Help OK Cancel

▶ 接下来从弧闪分析案例中选择分析方法。这可以是 NFPA 70E 附录 D.2、D.3 或 IEEE 1584。iEEE 方法是一个更精确的模型,并被设置为默认值。

🕈 Arc Flash Study Case	X Arc Flash Study Case
Info Method Clearing Time Parameters Adjustment SC Standard Alert	Info Method Clearing Time Parameters Adjustment SC Standard Alert
Arc Rash Method IEEE 1584-2018 Arc Current Variation for LV (<1kV)	Fault Clearing Time (FCT)
Bus Fault Current User-Defined (Bus Editor) Calculate Symm. 1/2 Cycle	 ○ User-Defined from Bus Editor ☑ Update FCT to Bus AF Page
Symm. 1.5 to 4 Cycle	Main Protective Device Isolation
Steady-State lbf at 30 Cycles Syn. Gen Steady-State lbf Update Fault Current to Bus AF Page Update Fault Current to Bus AF Page	
Motor Contributions	Control Lindhan Devices
Remove after 30 Cycles Exclude if Motor <= 50 HP/kW Incident Energy for LV Equipment Voltage <= 208 Xfmr < 125 kVA	Current Limiting Devices Determine CLF operation based on Peak Let-Through Curves
☑ 1.2 cal/cm ² 2 lbf <=	
< AF Decay > Copy New Delete Help OK	Cancel

教程

入门

- ▶ 下一步需要选择电弧故障清除时间(FCT)。默认设置为从保 护装置(PD)的 STAR 保护装置时间电流特性(TCC)自动确 定 TCT。在大多数情况下,最保守的解决方案是只为主馈线 PD 选择一个 TCC,因为它们需要更长的时间来运行。如果您没有 为总线选择 TCC,ETAP 将使用来自母线弧闪页面的用户定义 FCT。
- ▶ 要选择的其余选项可以保留为默认值,并且是无需解释的。
 例如,您可以选择将全局计算结果更新回母线的弧闪页。
- ▶ 一旦从母线和弧闪页面选择了这些信息,您所需要做的就是 点击工具栏上的弧闪图标来启动计算。该程序将提供所有故 障母线的完整报告,以及每个保护装置位置和故障母线的所 有标签。

99

▶ 对于 ETAP 中的所有不同配置,可以重复 AF 计算。场景和研究向导可用于跟踪和重复不同的计算,如下图所示,其中执行和记录了两个不同的 AF 计算:

> 可以使用弧闪结果分析器查看弧闪计算结果。点击弧闪结果 分析器图标,可以从短路工具栏启动 ETAP 中的这个新工具。 弧闪结果分析器允许您查看多个研究的结果以进行比较,轻 松发现系统中的潜在问题,并确定最坏情况。同时,可以从 100

这里生成和打印标签、工作许可证和数据表。

6.6 电机启动分析

本教程的目的是介绍 ETAP 的电机启动模块。它将显示静态和动态模型,可用于模拟真实的电机特性。将输入运行每种类型研究所需的最小数据量。将显示电机起动输出图的示例。您需要使用返回密钥代码联系 OTI,以便激活此模块。

▶ 单击模式工具栏上的电机启动启动按钮, 切换到电机启动分

➤ 从分析案例工具栏中,打开电机启动分析案例编辑器。在这 里您可以添加和修改条件状态。

Study Case			•	×
💼 💼 MS-Dy	yn 📑 💤 MS-Dyn	Cable		•
18 💼 🛛	Edit Study Case			
	Edit the currently selected Study Case			

▶ 在事件页,将总模拟时间更改为10秒。输出的图形将显示0
 至10秒的分析结果。

析模式。

File Edit View Project Defaults RevControl Library Warehouse Rules Real-Time DataX Tools Window Help

 Image: Second Sec

入门

E	vent	Model	Adjus	tment	Alert							
E E	vents	_			Action	1 by	Element					
	Event I	D	Time		Act	on	Load ID	St Categ	Rating	kV	Bus ID	
	* Event * Event * Event	1 (2 (3 4	0.100 0.800 4.000		Sta Sta	t t	Syn 1 Pump 1	Design Design	1250 HF 500 HP	P13.2 kV 4 kV	Sub2A Sub3 Sw	
					Action	- by	Ad	ld Ed	lit	Delete]	
					Acti	on	_	Starting Cate	gories	Bus ID		
	Add	Edit	Del	ete			A	dd E	dit	Delete		
- T	otal Sim	ulation 0	Time – Sec.		- Action	n by Ac	Load Tran ctive	sitioning				

- 现在,您可以添加无限数量的事件来模拟单个电机启动模拟中的切换操作。可以分别使用"按负荷动作"和"按启动类别动作"功能启动或关闭单个负荷或已分类的电动机组。您还可以通过单击"负载转换"选项从一个加载类别更改为另一个加载类别来更改操作负载。
- 您可以通过选择事件页面并单击事件标题下的添加按钮来添加事件。通过选择事件并修改相应的操作标题(按设备、按起始类别、按加载转换),可以添加、修改或删除在每个事件

Ever	nt Model nts	Adjustment A	lert Action by	Element					
Ev • E • E	ent ID 7 vent 1 0 vent 2 0 vent 3 4	Time 0.100 0.800 0.000	Action Start Start	Load ID Syn1 Pump 1	St Categ Design Design	Rating 1250 HF 500 HP	kV 913.2kV 4kV	Bus ID Sub2A Sub3 Sw	
		Event Edit	e E	vent ID	Tim O Cano	ne	is ID		
Ad	d Edit	Delete		Ad	ld Ed	lit (Delete		
- Tota	Simulation	Time Sec.	Action by	Load Trans ctive	sitioning				

时间发生的操作。单击确定保存所做的任何更改。

又击 olv 中的元素图形,打开 syn1 的编辑器。单击加载模型选项卡。在加速时间(静态启动)字段中,输入1秒作为空载加速时间,输入3秒作为满载加速时间。单击确定保存并退出。
Synchronous Motor Editor - Syn1	ſ
Starting Mode Cable/Vd Cable Amp Protection Reliability Remarks Comment Info Nameplate Model LR Model Inertia Exciter Load Start Dev Start Cat	
1 1250 HP 13.2 kV 1-3/C 4 AWG/kcml 15 kV Load Torque Madel ID Crete Care	
A0 = 10 A1 = -91 A2 = 328 A3 = -147 A0 = 10 A1 = -91 A2 = 328 A3 = -147	Run Dynamic Motor Starting Run motor acceleration - dynamic model calculation Run Static Motor Starting Run motor acceleration - static model Acculation
None Polynomial Curve Load Model Lib Print	Display Options Motor starting display options
No Load 1 Full Load 3	Alert View Display alert view
	Open the Report Manager
	Motor Starting Plots View motor acceleration plots
B R Syn1 - M ? OK Cancel	9 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 -

教程

> 您刚刚看到和改变的数据是进行一项简单的静态电动机起动 研究所必需的最低限度的数据。通过单击电机启动工具栏上 的运行点击静态启动按钮来运行研究。注:计算完成后,可 访问绘图和输出报告。绘图的一个例子将显示为动态研究。

运行点击动态启动分析

入门

现在将使用与静态分析相同的分析案例条件和事件进行点击动态启动分析。然而,动态分析还需要额外的数据。双击 syn1元素图形以打开其编辑器,然后转到模型页。在动态模型标题下,必须选择无以外的类别。单击典型数据按钮将根据铭牌选项卡下指定的额定值填充必要的内容。

nchronous Motor Ed	litor - Syn	1						X
Starting Mode Ca	able/Vd	Cable	Amp	Protect	ion	Reliability	Remarks	Comment
Info Nameplate	Model	LR M	odel	Inertia	Excit	er Load	Start Dev	Start Cat
1 1250 HP 13.2	2kV					1-3/0	4 AWG/kcm	il 15 kV
Impedance			•/			0	-Xd" Tole	erance
Xd" 15 385 X	(d"/Ra	27 F		7 Ra		0nm 1 848267	± () %
		2/	0.0	/ Tu				
X2 14.7 X	(2/R2	27 F	R2 0.5	44 R2		0.81052	Inertia	
Xo 9.5 >	(0/R0	32 F	R0 0.2	97 R0	().441961	H O	.799
		R	dc 0.5	7 Rdd	().848267		
Dynamic Model –		e 7		•,		C		
None	V 4	110	V	% 100	Talat	Sec	Shreak	0.0
 Subtransient 	Xa	ΠU	λq	100	100	5.6	Juican	0.0
Transient	Xdu 1	116.93	Xqu 1	4.79	Tdo"	0.002	S100	1.07
Equivalent	Xd'	23	Xq'	23	Tqo'	3.7	S120	1.18
Typical Data	XL	11	Xq"	12	Tqo"	0.002	Damping	2
Machine Type				-IEC 6	0909 S	.C.		
Application	Mator		_			Exciter	Туре	
/ plication	MOLOI		•	[Furbine	e 130%		•
Rotor Type	Round-Ro	tor	•	GOST	S.C	Evoitor	Turce	
				[Thyristo	or Self-Excitat	ion	•
h 🔒 🖻 🔇	Syn1				-	>	? ОК	Cancel

▶ 现在转到加载模型页面查看加载模型。确保为此电机输入负载模型。如果需要输入负荷模型,请单击负荷模型库按钮, 然后在出现的窗口中单击确定接受电机负荷。

▶ 转到惯性页,在电机惯性(H)字段中输入0.2,然后单击确 定。电机 WR2 将自动更新。单击确定退出 syn1 同步电机编辑 器。

nchronous Motor Editor - Syn1	1		X
Starting Mode Cable/Vd Info Nameplate Model	Cable Amp Prote LR Model Inertia	ction Reliability Exciter Load	Remarks Comment Start Dev Start Cat
1 1250 HP 13.2 kV		1-3/	/C 4 AWG/kcmil 15 kV
Load Coupling			
Motor	Coupling Gear]][Load
Inertia Calculator	Coupling	load	Total
RPM 1800	1800	1800	1800
WR ² 312.8	40	600	952.8
H 0.2	0.026	0.384	0.609
Include Shaft Torsion Effect			
🗈 🖻 🖍 🔇 Syn1		- >	? OK Cancel

- ▶ 现在您可以进行一个点击动态启动分析。单击电机启动工具 栏上的运行电机动态启动按钮开始分析。
- ▶ 单击电机启动工具栏上的电机启动绘图按钮以查看分析结果的图形。然后电机启动曲线窗口将会出现,您可以选择要显示的曲线。选择你要查看的图像,或单击确定显示所有图形。

Motor Starting Plot Select	on	×
Device Type	Device ID	Plot Type
Gen / Grid	Syn1 Pump 1	🔽 Slip
MOV Still and / Conneiter	Mtr7	✓ Speed
Bus		🔽 Current (Line)
		🔽 Current (Terminal)
		📝 Vt (Motor Base)
		📝 Vt (Bus Base)
		V Bus
Combine Plots		🔽 Accel. Torque
		Motor Torque
		🔽 Load Torque
		📝 kW (Electrical)
		📝 kvar
		📝 kW (Mechanical)
		Check All Uncheck All
Close All Plots	Help OK	Cancel

➢ ETAP的电机启动分析模块是模拟和研究电机启动情况的出色 工具。

6.7 谐波分析

本教程的目的是介绍 ETAP 的谐波分析模块。将展示如何发现系统内的谐振频率,以及如何确定谐波干扰的大小。您需要使用返回密 钥代码联系 OTI,以便激活此模块。

▶ 单击模式工具栏上的谐波分析按钮,切换到谐波分析模式。

	🛀 File	Edit View	/ Project	Defaults	RevControl	Library W	arehouse	Rules	Real-Tim	e DataX	Tools	Window	Help											
	i 🖪 🖬 🖥	1 🖶 🔍	🔏 🕒 🖡	🗅 🖑 🚭	Q Q 🧟	2 In a	AE AF		<u>a</u> 8		A 👔	. i 🔅	Example (Default	•	Phase			•	/ 🔝 📮	i 🎲 D	evice Setti	ngs - AN	ISI -
	😽 Base		• 🔁 St	udy View	• Stud	ly View	• -	Normal		- 🖻	• 🗈 🬧		šþ 🥏	34.5	kV 🖣	「王	과 문 🛛	F	66			• •	. 🖻 🖴	НА
1	-	P	۶ 🛦	- ў •• Z	₩ Mr	<u> </u>	6	P	1	🔬 🗄	L C	Q-TLP	1	\sim	?	0 •	≭	->	1	/_ N	-2 ;	9	vvo 1	© ₽∜Q -
	Ŷ				Ha Sw Ha	rmonic itch the curr rmonic Analy	ent preser ysis Mode.	tation to	,															

ETAP 谐波分析模式中包含两种分析方法。

▶ 打开谐波分析案例编辑器以更改研究的计算选项。在绘图页上,您可以选择要在输出图和单线图上显示的元件。

Study Case				×			
🛍 💼 HA	· A.	HA-LF	Cable	-			
	Edit Study Case Edit the currently selected S	itudy Case	Harmonic Analysis Study (Info Plot Model Device Type Cables Transmission Lines Impedances Transformers Reactors Harmonic Fitters Capacitors	Case Adjustment	Alert Device ID Bus2 Bus4 Bus5 Bus5 Bus7 Bus9 Bus23A LVBus V Plot/Tabulate	Plot Options Plot/Tabulate X X X X X X X X X X Uncheck All	
			E HA		• E Hep	ОК Са	ncel

单击谐波分析工具栏上的运行频率扫描按钮。如果选择 Prompt,系统将提示您输入输出报告的名称。确保运行谐波 频率扫描。

➤ 在频率扫描中计算的阻抗值显示在单线图上。您可以调整频 率滑块以不同的频率间隔显示阻抗值。要获得完整结果,请 查看输出报告或绘图。请注意,单线图上显示的结果仅适用 于在谐波分析案例编辑器中选择用于绘图的母线。

▶ 通过单击谐波分析工具栏上的谐波分析图按钮,然后选择所 有先前选择的母线,可以查看频率扫描的图形结果。可以选 择一个或所有母线出现在图上。

7.065 Ohms

▶ 该图可以轻松确定系统中是否存在任何共振条件。可以看出, 在 Sub3 母线的 21 次谐波处似乎存在谐振点。

▶ 要确定这种共振的严重性,可以运行谐波潮流分析。单击谐 波分析工具栏上运行谐波潮流"按钮。

▶ 总的来说,单线图的结果显示,在母线 sub3 处的总谐波失真 很小。如前所述,单击谐波分析绘图按钮,可以打开一个图 形以查看更多详细信息。

113

➢ ETAP的谐波分析模块可以让您知晓系统中任何谐波的严重性, 并在必要时决定如何纠正问题。

6.8 暂态分析

式。

本教程旨在介绍 ETAP 的暂态稳定分析模块。它将演示如何模拟 引起系统瞬变的事件和动作。您需要使用返回密钥代码联系 OTI,以 便激活此模块。

▶ 点击模式工具栏上的暂态稳定分析按钮,切换到暂态稳定模

File Edit View Project Defaults RevControl Library Wareh Real-Time DataX Tools Window Help 🔁 🗃 🔜 🖷 🖳 🕌 🚺 🚺 🔍 🔍 🔍 🧐 🥸 😒 😒 😒 💷 🎬 🎬 👘 🖉 👘 👘 👫 🖗 📮 🚺 🗰 👫 🖗 📮 🚺 Cample Default 📧 Phase 🛠 Base 🔹 😤 Study View 🔹 Study View 🔹 🗠 Normal 🔹 🗟 🕿 💽 🚓 📮 👬 🖘 🗍 34.5 🗤 🗸 🕌 💌 📕 🧷 💽 🔅 🏶 Device Settings - ANSI | ⋈ ✦ | 東神智雄 ∲ | 🧟 🥷 🔹 🖊 🖕 💼 TS ±P ±ダ 🕌 🤤 🎏 🍕 🖔 💱 🗣 米 - グ 🦾 ブ №2 🥔 😍 🗲 ᇠ 🎺 👆 -Mr-6 Transient Stability Switch the current presentation to Transient Stability Analysis Mode. M

➤ 点击分析案例工具栏上的编辑分析案例按钮,打开暂态稳定 分析案例编辑器。从暂态稳定分析案例编辑器中,您可以添 加、修改和删除暂态导致事件。

Study Case		▼ ×
کے کہ	TS 🔹 🎶 TS	Cable
13 F	Edit Study Case	
	Edit the currently selected Study Case	

单击事件选项卡打开事件页面。已输入两个事件:事件1,在时间t=0.5秒时发生故障,以及事件2,故障清除,发生在时间t=0.7秒。您可以在此编辑器页面中添加,修改或删除这些事件中的事件和操作。

Transient Stability Study Case						
Info Events Plot Dyn Model Adjustment						
Events						
For Event 1 Active						
Event ID Time Device Ty Device ID Action Setti Setti						
* Event 1 0.500 * Event 2 0.700						
Add Edit Delete Add Edit Delete						
Total Simulation Time 5 Second						
Simulation Time Step (dt) 0.001 Plot Time Step 1 × dt						
K TS V A Help OK Cancel						

▶ 每个事件至少需要一个动作。您可以通过单击编辑(操作) 按钮来修改事件操作。您可以从动作编辑器中选择任意数量 的选项。单击确定保存数据并退出动作编辑器,然后再次单 击确定以保存并退出暂态稳定分析案例编辑器。

Events Event ID Time Event 1 0.500 Fevent 2 0.700	Actions For Event	Event 1 Active				
Event ID Time * Event 1 0.500 * Event 2 0.700	Device Ty Devi Bus Sub	ice ID Action Setti	0.11			
		3 3 Phase Fau	Setti			
		Action	E vent ID	Event 1	Active	
		Device Type Bus	Device ID Bus1 Bus2		Action	% Time (se
	L		Bus4 Bus6 Bus7 Bus9 Bus234]	Cancel	
Add Edit Delete	Add	Edit Delete	LVBus Main Bus MCC1			
Total Simulation Time	5 Second		Sub2A Sub2B Sub 3			

教程

入门

▶ 在暂态稳定分析案例编辑器中,您可以选择在 Dyn 模型选项 卡上对感应和同步电机建模的方法。您还可以在绘图页面上 选择要在单线显示和绘图的设备。

* ×

Cancel

- >

Study Case

Help

OK

< TS

isient Stability Study Case		Transient Stability Study Case		
fo Events Plot Dyn Model Adjustment		Info Events Plot Dy	n Model Adjustment	
Dynamic Modeling Syn. Motors, LV Syn. Motors, LV Ind. Machines, IW	mically	Device Type Svn. Generators	During ID	Plot Options
Ind. Machines, LV ▼ Dynamic Modeling During Simulation (Time > 0) ✓ Include LTC Action ✓ Include Starting Device	Starting Load for Accelerating Motors Based on Motor Electrical Rating Based on Motor Mechanical Load	Syn. Motors, MV Syn. Motors, LV Ind. Machines, MV Ind. Machines, LV Ruses	Bus1 Bus2 Bus4 Bus6	Plot/ Labulate
Constant Power Load Threshold Voltage (VLC Limit) 80 % Delta V 5 %		Branches Lumped Load Wind Turbine MG Set	Bus7 Bus9 Bus23A	x
Reference Machine Auto Assign A Reference Machine for each Sub-system	Synchronous Machine Damping Use Norminal System Frequency Use Weighted Machine Frequency		Main Bus MCC1 Sub2A	x x x
Frequency Dependent Model			Sub 3	x
Use Dependent Models for Machines and Network			Sub3 Swgr	x
Synchronization Check to Close Tie CBs Auto-Sync. Phase Angle Phase Angle Deviation <	Salent-Pole Machine Modeling Method 1 (Enhanced IEEE) Method 2 (IEEE)		Sub23	Ŷ
Frequency Deviation <	Apply Saturation Factor Sbreak			

▶ 现在,单击暂态稳定工具栏上的运行暂态稳定按钮,对该系

117

统运行暂态稳定分析。如果选择提示,系统将提示您输入输 出报告的名称。

▶ 对于单线图上的选定元件,可以看到分析结果。暂态稳定时间滑块工具可用于在选定的分析期间随时查看结果。

>利用暂态稳定绘图功能可以查看图形结果。单击暂态稳定工 具栏上的此按钮。通过选中出现在窗口右侧的适当框,选择 要显示的绘图类型。

Transient Stability View Constraints and Const	×
Device Type Device ID Plot Type	уре
Transient Stability Plots Syn. Motors, MV	e (Relative)
View transient stability plots Syn. Motors, LV V Vew transient stability plots) (Absolute)
I TS - Generator Relative Power Angle	nical
Generator Relative Power Angle	
- GenJ	
421 Vorrent	
v Erd V Id	
40 W Machine Z	
	All
	:k All
5 Combin	ne Plots
z trie (dec.)	

▶ 使用 ETAP 的暂态分析模块,您可以轻松地创建多个暂态场景, 以便更好地评估系统的响应。

6.9 保护配合 (star)

本教程简要概述了 star 保护装置协调模块的基本操作。它将介绍如何创建新的 Star 视图以及如何将新设备添加到现有 Star 视图。 您需要使用返回代码来联系 OTI,以便激活此模块。

创建一个新的 star 视图

▶ 启动 ETAP 演示版并选择"新建工程"选项。

▶ 在模式工具栏中点击编辑模式。

Project Defaults RevControl Library Warehouse Rules Real-Time DataX Tools Window 🔁 🗃 🔚 🖙 🗔 🖌 😹 🗈 🗈 🔍 🔍 🔍 🔍 🐼 🕼 🧰 🖼 🔚 🕮 📾 🎆 👘 🖉 👘 👘 👘 🖓 😨 Example Default Phase 💌 🛄 🧷 💦 🚽 🏟 Device Settings - ANSI 💌 🔁 Study View 💌 Study View • 🔸 Normal 🔹 🗟 💶 🚺 🕋 🗔 🚽 🏭 🛷 🛛 34.5 - kv 🔹 🛱 🎫 🖬 🖬 🍯 🧟 🧠 - + ೪≠ 🛦 ୬• ∿ \\ 🐚 🐻 ±P ≠≠ 🛣 🖶 ୧୬ 📅 🔱 💱 🖙 米 チ 🚣 沈 №2 🥔 🖏 Switch the current presentation to Edit Mode. **6***

- ▶ 从编辑工具栏中点击过流继电器按钮并拖动至 OLV1 视图中。
- ▶ 双击过流继电器打开继电器编辑器。
- ▶ 进入 OCR 页面点击设备库按钮,然后将出现快速选择继电器 的窗口。选择选择制造商 GE Multilin 和 735/737 型号,然 后单击 OK。GE Multilin 735/737 继电器数据填充在 OCR 页 面中。

入门

籺	程
ナス	11

rcurrent Relay Edi	tor - Relay1								<u> </u>
nfo Input Out	put OCR	TCC kA M	odel Info	Checker	Remarks	Comment	t		
GE Multilin 735/737 OC Level								Library Info	
OC1 Block TOC by	/ IOC & comb	 Enable Integration Integration 	ed ated Curv el	es				Libran	y
Device Parameters Sele	ected Device	ID		Тур	e		FLA	% LRC	SF
				Induction	n Motor		0.00	0	0
Phase Ground									
Vercurrent									
Curve Type	ANSI - Extr	emely Inverse		•		Terminal	Phase		•
Pickup Range	20 - 100 x(CT Sec 🔻	%		Rel	lay Amps	Pr	im. Amps	
Pickup	20) _	Step: 10).0		0		0	
Time Dial	1	* *	Step: 1.	0					
Instantaneous									
	4 20 -CT	C	Multiple			Terminal	Phase		•
Pickup Range	4-20 XCT	Sec •	Multiple	5	Rel	lay Amps	Pr	im. Amps	
	20	•				0		0	
b (∽	Relay1				-	#	? ОК	Cancel

➤ 点击输入页面。输入 CT 变比(800:5)和接地 CT 变比(50:5)。 CT 变比可以直接在继电器编辑器中输入,其中没有 CT 连接 到继电器。在编辑模式下,您需要将 CT 放到单线图中,并在 运行计算之前将继电器连接到 CT,但查看 TCC 曲线不需要 CT。

	lay Editor - Kelayi						
nfo Input	Output OCR TCC kA	Model Info Checker Remarks	Cor	nment			
GE Multilin							
/35//3/							
Current Vo	ltage Base						
Phase							
	Teminal	ID		Туре	Prim. Amp	Sec. Amp	
lp1	Phase		-		800	5	
Ground							
Ground	Terminal	ID		Туре	Prim Amp	Sec Amp	
Ground Ig1	Teminal Ground	ID		Туре	Prim Amp 50	Sec Amp 5	
Ground Ig1	Terminal Ground	ID		Туре	Prim Amp 50	Sec Amp 5	
Ground	Terminal Ground	ID		Туре	Prim Amp 50	Sec Amp 5	
Ground Ig1	Terminal Ground	ID		Туре	Prim Amp 50	Sec Amp 5	

▶ 在模式工具栏中点击 star 保护设备配合按钮切换至 star 模

式。

/ F	ile Edit View	Project Defaults	RevControl L	ibrary Warehouse	Rules Real-Ti	me DataX Te	ools Window	v Help									
i 🖪 🖥	i 🔒 🔒	🖌 🕒 🖺 🕘 🗶	. Q, Q, 🧟 💆		III 🔡 🕤 🛛 🖉	የ 🔳 🖬 🙈	0 📜 🔅	Example D	efault	•	Phase		- 📕 🎢	3 📜 🚳	Device Set	tings - AN	vsi 🔹
1 🛠 e	lase	🔹 🖶 Study View	 Study 	View 💌 🚣	Normal	🔹 🗟 💌 [0` 🔝 🗔 📮	🚡 🥏	34.5	kV 🤳	単語る	न 🐺 🏚	🗳 🗳		- +		
	😌 🗲	< 🙈 🏄	Mr.	<u>k</u> 0 :	P 💅	👗 🚠	P Q P	, 🟒	\sim	8 -	⁰• ⊀	- ў -	1.7.	N-2	9	vvo	₽¥Q -
				Star - Pr Switch t - Protect	otection & Coord he current present tion & Coordinat	fination ntation to Star ion Mode.											
		更上	式 ot	or 初1	页 -	首生	洗坯	侎		名	伏	三占	i ± 7	台油	c t	or	楢

▶ 要生成 star 视图,首先选择继电器,然后点击右边 star 模式工具栏的创建 star 视图按钮。

这将打开一个新的 star TCC 视图,其中包含选定的继电器 1 曲线。其他保护装置的星图也可以用类似的方式生成。在本 教程的下一节中保持 star1 打开。在与曲线关联的标签标记 上单击鼠标右键,然后选中"设置"选项。这将在标签标签 中显示与继电器设置相关的更多信息。

- ▶ 将设备曲线添加至 star 视图
- 切换至编辑模式然后将熔断器添加至 OLV1 视图的单线图中。
 双击熔断器符号打开熔断器编辑器。转到额定值页面,单击 设备库按钮以显示快速选择熔断器对话框。选择制造商 S&C 124

										Fu	use Edit	or - Fuse8								x
											Info	Rating 1	CC kA N	lodel Info	Reliability	Checke	r Remarks	Comment	1	
											S&C					27kV	max.	13E	6	1
											SMU	20				Standa	rd Speed	12.5 kA		1
											I									
														Sta	ndard (a) ANS () IEC	1				
											F	lating kV 27	▼ [13E	Size	Continue	ous Amp T	Interruptin 12.5	g Tes • 6.65	t PF	
brary Quick Pick - Fuse		Termini												×		_				
Standard ANSI		Manufacturer 💡	, Model	× ^{Max} kV ▼	Speed 🚽	CLF ,	Brand Name	_↓ Class ,	, Type 🖕 Ć	^	Size ,	Cont. Amp 👻	Int. kA	•	Library					
© IECDC	916	S&C	SMD-50	48.3	Slow	No		Erated	Power Fuse		5E	5	12.5							
0.00	917	S&C	SMD-50	48.3	Standard	No		E-rated	Power Fuse		7E	7	12.5							
Manufacturer	918	S&C	SMD-50	72.5	Slow	No		E-rated	Power Fuse		10E	10	12.5							
Heterence	919	S&C	SMD-50	72.5	Standard	No		E-rated	Power Fuse		13E	13	12.5							
	920	S&C	SMU-20	17	к	No		E-rated	Power Fuse		15E	15	12.5							
Link	921	S&C	SMU-20	17	Slow	No		E-rated	Power Fuse		20E	20	12.5							
www.sandc.com	922	S&C	SMU-20	17	Standard	No		E-rated	Power Fuse		25E	25	12.5							
	923	S&C	SMU-20	17	Very Slow	No		E-rated	Power Fuse		30E	30	12.5							
Model	924	S&C	SMU-20	27	К	No		E-rated	Power Fuse		40E	40	12.5				- > 🚳	20	K Can	cel
Reference	925	S&C	SMU-20	27	Slow	No		E-rated	Power Fuse		50E	50	12.5			_				
	▶926	S&C	SMU-20	27	Standard	No		E-rated	Power Fuse		65E	65	12.5							-
Application	927	S&C	SMU-20	27	Very Slow	No		E-rated	Power Fuse		80E	80	12.5							
Transformer, cable	928	S&C	SMU-20	38	К	No		E-rated	Power Fuse	ŀ	100E	100	12.5							
riansionnei, cable	929	S&C	SMU-20	38	Slow	No		Erated	Power Fuse		125E	125	12.5							
	930	S&C	SMU-20	38	Standard	No		Erated	Power Fuse	1	150E	150	12.5							
	931	SAC	SMU-20	38	Very Slow	No		Erated	Power Fuse	ŀ	175E	175	12.5	-						
Notes	933	SAC	SMU-40	5.5	Slow	No	-	Erated	Power Fuse		200E	200	12.5							
	933	SAC	SMU-40	5.5	Standard	No		Erated	Power Fuse	ŀ	LUUL	200	.2.0							
	934	S&C	SMU-40	17	Slow	No		E-rated	Power Fuse	-										
													_							

和型号 SMU-20, 最大电压 27 kv, 标准速度和尺寸 13e。

▶ 使用模式工具栏切换到 star 模式。选择 Fusel 并单击 Append to Star View (附加到 star 视图) 按钮以打开 star 视图选 择编辑器。选择 starl 将 fusel 附加到 starl 视图, 然后单 击 ok。

Star View Manager		×
Star View Manager Filter Star view list by selected Star Views Bus 1 - TCC Gen1 - TCC LVBus TCC Main Bus - Feeder 1 Main Bus - Feeder 2 Main Bus - Feeder 2* MTR 5 Pump 1 - TCC Star1 Star2 Star3 Sub3 Swgr : XFMR3	component(s) Components Relay1	Append
Select All Deselect .	All Help	

入门

▶ 打开 Starl 视图,里面比之前添加了熔断器1曲线。单线图 上的元件或元件组可以类似的方式附加到一个或多个 star 视图中。

温馨提示:将新设备添加到 star 视图的更快方法是在单线图上选择 设备,按住 SHIFT 键,然后将其拖动到活动 star 视图。每条 TCC 曲 线的颜色可以通过点击右边工具栏的绘制选项按钮进行更改。

现在您将学习如何访问现有 ETAP 单线图的 star 视图

1. 重启 ETAP 演示版,从演示版项目屏幕(第二幕)中,选择示 例项目(ANSI)。

ETAP Demo Project			×					
etan	Getting Started	Videos & Tutorials	~					
Powering Success	Example ANSI Project Make modifications to this ANSI project and run multiple studies.	Analysis Device Coordination						
🛞 What's New	Example IEC Project Make modifications to this IEC project and run multiple studies.	View more videos						
हिल्ला Solutions	Create a project from scratch and run multiple studies.	Solution Overview Videos						
	ETAP Mobile APP	Distribution Industrial						
	Available for free download from Microsoft® and Apple® App stores.	Low Voltage Rail - eTrax TM						
	Get it from App Store	Wind Turbine Wind Turbine Photovoltaic Array & Solar Panel						
ETAP 18 Demo			~					

2. 从访问级别屏幕(第四幕)中,选择项目编辑器。

Project File Name Example-ANSI								
User Name	OTI							
Access Level								
Admin								

3. 当单线图打开时,使用下拉列表切换到继电器视图。

4. 使用工具栏切换至保护设备配合(star)模式。

[🖌] File Edit View Project Defaults RevControl Library Warehouse Rules Real-Time DataX Tools Window Help ं 🖟 🗃 🔚 🕼 🖌 🕼 🌔 🖱 🔍 🔍 🔍 🐼 🐼 🔊 🗠 🖼 🖼 🖬 🖬 🗮 ன 🕹 🕼 🖉 🖡 🕹 🖉 🖡 Example Default 🔹 📕 🧷 🌄 💂 🎯 Device Settings Phase 🔹 🖶 Study View 🔹 🖻 🕋 💽 📲 🕻 🏕 🛛 34.5 - kv 🔹 🟥 評 🎞 🏚 🍯 🗲 🚭 😫 Base Study View 🔹 🚣 Normal • 🔸 📮 \$P \$\$ ▓ 昔 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ ★ \$\$ \$\$. 😲 🗲 🔥 🕉 🕂 🗸 6 N-2 🌽 🔽 Star - Protection & Coordination Switch the current presentation to Star - Protection & Coordination Mode.

从 star (保护设备配合)工具栏中单击运行/更新短路切除
 KA。这将对故障母线进行半周期3相和线对地短路研究,并
 相应更新所连接保护装置的限流电流。

6. 打开 CB22 低压断路器编辑器并转到 TCC kA 页面。

入门

ow Voltage Circuit Breaker Ec	ditor - CB22	-	rates one events, a	×
Info Rating Trip Device	TCC kA Model Info	Reliability Interlock Che	ecker Remarks Comment	
ABB K-2000M		0.6 kV max. 3 Pole	65 kA @ 0.48 kV Size 2000 💌	4
ABB MPS-C-2000			2000	4
TCC kA © Calculated © User-Defined	Refere	ence kV © Calculated © User-Defined	kV 0.48	
TCC Clipping Current Sym. ms 3-Phase Fault Line-Ground Fault	Asym. ms Show on TCC Show on TCC	kA @ Base kV (0.48 kV) 38.72 40.12	۵	\$
TCC Minimum Current (Sy 3-Phase Fault Line-Ground Fault	m.)	kA @ Base kV (0.48 kV)		
B (B) 5		Pin (Disab	le Short-Circuit Update)	Cancel

- 7. 如上图所示,在低压断路器编辑器中更新短路电流和基本 kv 值。
- 8. 点击系统工具栏上的 star 系统

System	▼ X
Î 🗄 🚰 💘 🚟 🎮 🍋 🥝 参	· 🕂 🏋 🛐 🗊 👔 🚏 🚏
Switch to Star Systems	

9. 在显示框选择 Bus1-TCC

3-D	Database Toolbar				▼ ×
*	Base	*	Ъ	Bus 1 - TCC 🛛	
				Bus 1 - TCC Gen1 - TCC LVBus TCC Main Bus - Feeder 1 Main Bus - Feeder 2 Main Bus - Feeder 2* MTR 5 Pump 1 - TCC Sub3 Swgr: XFMR3	

TCC 曲线将出现,如下图所示:

您可以从现有的单线图创建 TCC 曲线,正如上面所示,只需按照下面 所示的步骤:

在现有的单线图中创新 TCC 曲线

1. 高亮显示或 rubber-band 创建 star 视图的路径。

2. 点击 star 工具栏中的"创建 star 视图"按钮

下图所示 TCC 曲线将会出现:

通过单击"TCC 绘图选项"工具或双击 star 视图背景,可以打开显示选项以自定义颜色、线条样式、轴设置、图例、设备标签等。 在本教程的下一节中,在 star 模式打开继电器视图。

Star 动作序列

使用 ETAP Star, 不仅可以处理时间-电流曲线, 还可以简单地通 过在单线图上放置故障来确定保护装置的动作时间。操作序列将自动 计算并列在事件查看器中, 该查看器与单线图动态链接。此一步概念 利用智能单线图并执行一整套动作来确定所有保护装置的动作。这包 括基于单个故障贡献水平的每一次电流特性曲线的内部移位(标准 化)。

从 star (设备保护配合)工具栏单击插入故障(设备保护配合),并将其放到 bus1 上。

2. 从 star (设备保护配合)工具栏中单击序列查看器。查看器

显示适用保护装置的动作列表。

STAR (PD Co	oordination)	5	See Vie Vie	Quence View en Sequence wer	🔍 👰 📄 🏪 🐼 🛟 🕯 er e of Operation Event	× Ç					
Sequence	Sequence-of-Operation Events - Output Report: Untitled 3-Phase (Symmetrical) fault on bus: Bus1										
		ata Rev.: Ba	se	Config: Norma	Date: 09-14-2015						
Time (ms)	ID	lf (kA)	T1 (ms)	T2 (ms)	Condition						
175	CB22	28.087	80.0	175	Phase						
417	OCR7	3.125	417		Phase - 0C1 - 51						
500	CB8		83.3		Tripped by OCR7 Phase - OC1 - 51						
20294	OCR2	0.357	> 20294		Phase - 0C1 - 51						
20377	CB10		83.3		Tripped by OCR2 Phase - OC1 - 51						

6.10 最优潮流分析

本教程旨在介绍 ETAP 的最优潮流分析模块。它将说明如何确定 系统变压器的最佳设置。您需要使用返回代码与 OTI 联系,以便激活 此模块。

▶ 点击模式工具栏上的最优潮流分析按钮切换至最优潮流分析

1	File	Edit	View	Project	Defaults	RevContro	I Library	Warehouse	Rules F	Real-Time	DataX	Tools W	/indow	Help											
i 🔒	2		₿ 💁	X 🕒	🖪 🕭 🤁	Q Q 🧟 🔎	🔁 🔊		l 🏢 🔡 🗹	8	🔳 🗐 🗿	a 🕜 📮	i 🔅 e	xample D	efault	٠	Phase			- 📕 /	" 🛃 📜 🕯	Device Se	ettings - Al	NSI	•
*	Base			- 🔁 🤉	itudy View	• S	tudy View	/.	Normal		- 🗟 🕶	0 🥋	.]	š) 🧶 🛛	34.5	kV 🚽	「王	H F I	FI 🕴	🗳 🗳 🖉		- +	1		
	1	ę	1	۲ 🛦	- ∛∙•	~~ M	~ Y_	0	±P ±	/ 📩	- ii	₽.₽	P -JL- Q-JL-	Ł	\mathbf{b}	Po	0-	≭	- ў -	1.	📜 N-2	2	vvo	© ₽ [↓] Q =	
h																ŗ,	Optio	nal Power th the curr	Flow ent press	entation to alvsis Mode					
	- 1																abri								

▶ 在分析案例工具栏里面点击编辑分析案例按钮打开最优潮流 分析案例编辑器。

Study Case		▼ X
🛍 🙀 OPF	🝸 🛟 Prompt	Adjustments
Edit Study Ca	se	
Edit the curre	ently selected Study Case	

▶ 点击编辑器的目标选项页,打开目标页以输入研究目的。

LIC	Generator AVR	Generator MW	Shunt (Comp	Adjustmen
Info	Objective	Bus Voltage Constra	aint	Branch	Flow Constraint
Objective S	Selection				
			Weight	Exp	onent
	🔽 Minimize Real Powe	er Losses	100 🚖		
	📝 Minimize Reactive F	Power Losses	90 🚖	5	
	Minimize Swing Bus	100 🚖			
	Minimize Shunt var	Devices	100 🌲		
	Minimize Fuel Cost		100 🌲		
	Minimize Series Com	pensation	100 🔶	-	
	Minimize Load Shed	lding	100 🛓		
	Minimize Control	Movement	100 🌲		
		Adjustment			
	Optimize Voltage Se	ecurity Index	100 🌲	1	
	Optimize Line Flow	Security Index	100 🌲	1	
	Flat Voltage Profile		100 🔶	-	

➤ 要输入分析的约束和控件,请使用最优潮流分析案例编辑器的其余页面。可以选择或取消选择符合条件的系统元件。

▶ 在 0PF 工具栏点击运行最优潮流按钮开始运行最优潮流分析。

Optimal Load Flow	Output File Name
💘 👰 💼 🐼 🍋 🔭	Name OPF
Run Optimal Power Flow Run optimal power flow calculation	Help OK Cancel

▶ 最优潮流分析的结果将会出现在单线图上。要获得完整的结果,请查看输出报告。可以在"显示选项"中更改旧版本上显示的信息量。注:建议变压器 T2 采用新的抽头设置。

入门

现在可以使用 ETAP 优化系统以适应一组指定的约束。最优潮流分析模块允许您 找到配置系统的最有利方式。

6.11 可靠性分析

本教程旨在介绍 ETAP 的可靠性分析模块。它将展示如何进行分析, 输入设备可靠性数据, 并查看分析结果。您需要使用返回代码与 OTI 联系, 以便激活此模块。

▶ 点击模式工具栏上的可靠性分析按钮切换至可靠性分析模块 🖌 File Edit View Project Defaults RevControl Library Warehouse Rules Real-Time DataX Tools Window Help Phase i 🖪 🗃 🔚 | 🚍 🗓 | 💥 🗈 🖺 🕂 🔍 🔍 🔍 🧶 😥 😰 տ 🗨 🔚 🖽 🏥 🔐 🖉 🖉 🔚 📰 🗛 | 🕘 🥊 Example Default 🔹 🛄 🧷 💦 🚽 🍘 Device Settings - ANSI -🔹 🔁 Study View 🔹 Study View 🔹 🚣 Normal 🔹 🗟 💶 🖺 🚓 🗔 📮 👪 🛷 🛛 34.5 🗤 🔹 🏦 🏭 🔛 🔛 🍯 🗲 🚭 👬 Base - + -😌 🖶 🗶 🗲 🗶 🎵 N-2 🥔 🐜 👰 🕒 🌀 ±P ±≠ 🛣 🛅 🧐 🚟 矣 \sum 😌 🗲 <u>À</u> 🌤 🛶 🛝 Reliability Assessment Switch the current presentation to Reliability Assessment Mode. ۲te

▶ 从"分析案例"工具栏中选择名为 RA 的分析案例。要查看或 修改飞毛线哦条件,请单击编辑分析案例按钮打开可靠性分 析案例编辑器。

Reliability Analysis Study Case	
Info System Index Report Load Index Report Plot Study Case ID Method Study Case ID Study Case Study Case Study Case	
Loading Category Loading Category Design Operating P,Q Edi	t Study Case t the currently selected Study Case
Load Diversity Factor Charger Loading None Bus Maximum Bus Minimum Loading Category Operating Load 	
Study Remarks Second line of remarks for "RA" study case.	

▶ 可以在每个元件的编辑器中查看或修改系统中每个元件的可 靠性数据。这些数据可以从库中选择或手动输入。
Info	Phase V	/ Load	Motor/(Gen	Rating	Arc	Flash	Protection				
Н	amonic	R	eliability		Remarks	rks Comment						
4.16	k V 600 Amps						Asymmet	trical 0 kA				
Reliab	ility Parameters	5				Library						
λ_{A}	0.001	Failure/yr					Library .					
μ	4380	Repair/yr	MTTF 10)00 y	г		Source	•				
FOR	2.2831E-7]	MTTR	2 ł	ır		Туре					
Re	placement Ava	ailable hr	Alternative Sup Switchir 2	ply ng Time hr			Class					

▶ 单击可靠性分析工具栏上的运行可靠性评估按钮,运行可靠 性研究。如果选择Prompt,则需要为输出报告输入一个名称。

Reliability Analysis X	Output File Name	x
e: 🕬 🛇 🖬 🖻 🖉	Name RA	
Run Reliability Assessment Run reliability assessment calculat	tion Help OK Cancel	

▶ 可靠性研究的结果显示在单线图上。可以使用显示选项更改显示的数据量。

▶ 要查看系统的结果数据和索引,您可以通过单击分析案例工 具栏上的报告管理器按钮按钮打开输出报告。

Study	Case					▼ ×		
Ê.	<u> </u>	RA	* ()•	RA	-	Complete		SUMMARY
			E	Report Manager Open the Report	Manager	Branch Branch Connections Bus Complete		System Indexes
						Cover ECOST Ranking EENS Ranking Load	SAIFI	0.1892 f/customer.yr
						Load Point Report Sector Inter Cost Source	SAIDI	21.6564 hr / customer.yr
						Summary Switching Devices	CAIDI	114.466 hr / customer interruption
							ASAI	0.9975 pu
							ASUI	0.00247 ри
							EENS	147.892 MW hr / yr
							ECOST	333,463.60 \$/yr
							AENS	6.7224 MW hr / customer.yr
							IEAR	2.255 \$/kWhr

▶ 使用 ETAP 的可靠性评估模块可以准确地确定系统中不同点的故障可能性。这可以得出如何提高系统整体可靠性的结论。

6.12 直流潮流分析

本教程旨在介绍 ETAP 的直流潮流分析模块。将对直流潮流分析 案例编辑器进行修改,并调查创建不同加载方案的好处。您需要使用 返回代码与 OTI 联系,以便激活此模块。

 点击模式工具栏上的直流潮流分析按钮切换至直流潮流分析 模块。

Edit View Project Defaults RevCo ि 👌 🚔 🔜 । 🛱 🕵 । 💥 🗈 🖺 🖑 🔍 🔍 🔍 🙊 🐼 😰 😰 📾 🕬 🖼 🖼 🖬 🔛 🖉 👘 Cample Default 💌 📕 🧷 💦 📮 🎯 Device Settings - ANSI Phase 🔹 🛅 🚍 💽 🚬 🕻 🚁 🛛 34.5 - kv 🔸 崖 詳 🏭 🖬 🖬 🏺 🗲 🚭 👬 Base • 🔁 Study View Study View • 🚣 Normal - +

 ±P
 ±/*
 the point
 ±
 b
 b
 b
 the the the the presentation to DC tood Flow Analysis Mode.

 ±P
 DC Load Flow
 the the current presentation to DC tood Flow

 6 😌 🗲 🛦 🎺 👆 Mr h.

▶ 单击分析案例工具栏上的案例编辑器按钮打开直流潮流分析 案例编辑器。

Study Case						-	×
💼 💼 D	LF	* ±P	DCLoadFlo	w *	Complete		•
13 I I I I I I I I I I I I I I I I I I I	Edit Study Case						
	Edit the current	y selected	Study Case				

▶ 分析参数和限制在分析案例编辑器中指定。单击充电器/UPS 框更新充电器和 UPS 编辑器。现在,当直流潮流研究进行时, 充电器和 UPS 编辑器将反映计算出的运行负载。此外,检查 报告的临界和临界电压框。 入门

+14	τD
邳	不 干

Study Case ID DCLF	Solution Max.	Parameters Iteration 99	Precision	0.001
Update	age 🔲 Charge	r/UPS Operating Load		
Report	Under Over		lloit	Initial Condition
 Critical Voltage Marginal Voltage 	95 105 98 102	Operating Voltage Power	% ▼ kW ▼	 Use Bus Voltage Use Fixed Value
Study Remarks Second line of remark	cs for "DCLF" study	case.		

▶ 单击直流潮流工具栏上的运行直流潮流按钮,运行直流潮流 分析。

DC Load Flow	Output File Name
P→ Run DC Load Flow	Name DCLF
± V Run DC load flow calculation	Help OK Cancel

潮流计算结果将在单线图中显示。注意,这里只显示直流元件之间的潮流。使用显示选项可以修改单线图上显示的数据量。使用输出报告可以获得完整报告。与交流潮流分析模式一样,洋红色的母线表示略低于或超过电压的状态,红色的

母线表示临界电压状态。

又击单线图上 charger1 图像打开编辑器。单击打开负荷。请 注意,由于在直流潮流研究案例编辑器中进行了更改,此处 也显示了单线图中显示的计算充电器负载。单击信息选项卡 返回信息页。单击停止服务框,断开充电器的连接。单击确 定保存并退出编辑器。

DC	Charg	ger Editor - Charger1	L					<u> </u>	D	C Cha	Charger Editor - Charger1	
	Info	Rating Loading	SC Harmon	nic Reliabi	lity Remark	cs Comme	nt	_	I٢	Info	Info Rating Loading SC Harmonic Reliability Remarks Comment	_
	AC	0.48 kV 500 kVA				DC	250 V 1530 A			A	AC 0.48 kV 500 kVA DC 250 V 1530 A	
	Load	ling Category	Charger Loa	ading for AC	Load Flow				- Inf	Info		
		Loading Category	% Loading	kW ac	kvar ac	kW dc	kW Losses			A	AC Revision Data	
	1	Design	100	425	263	382	43 🔺			E	Bus busz 0.40 KV	
	2	Brake	100	425	263	382	43				DC Bus DCBus 1 v 250 V Base	
	3	Full Load	58	247	153	222	25			- 5-	Excises at Condition	
	4	Summer Load	0	0	0	0	0			E	Equipment Condition	
	5	Winter Load	0	0	0	0	0				Tag # Service Out	
	6	Start Up	0	0	0	0	0				Name State As-Built	
	7	Emergency	0	0	0	0	0					
	8	Shutdown	0	0	0	0	0			D	Description	
	9	Accident	0	0	0	0	0				Configuration	
	10	Load Cat 10	0	0	0	0	0 -				Data Type Estimate Normal	
		4					•				Priority Critical Status Continuous	
	Oper	ating Load	AC 224	k	var 134		OK Cance			Ty Cr	Type Demand Factor Connection Charger Charger Continuous intermittent Spare 3 Phase 100 50 0 % 1 Phase Charger Charger K Cancel)

单击退出运行框断开UPS。目前电;	池是直流系统的唯一电流
UPS Editor - UPS-1	×
Info Rating Loading SC Imp Duty Cycle Harmonic	Reliability Remarks Comment
AC Input 0.48 kV Output 0.48 kV 200 kW	DC 125 V
Info	
ID UPS-1	
In Bus Bus2 - 0.48 kV	
Out Bus Bus4 - 0.48 kV	Revision Data
DC Bus DCBus4 - 125 V	Base
Equipment	Condition
Tag #	Service In
Name	Out State As-Built ▼
Description	
Data Tupe Fetimate 👻	Configuration
	Normal
	AC Consection
Demand Factor	AL Connection
Continuous Intermittent Spare	J Phase 1 Phase
🗈 🖻 🖍 🔇 UPS-1 🔻	S 🙀 ? OK Cancel

▶ 双击元件图形,打开 UPS-1 的编辑器。在 UPS 编辑器信息页 单击退出运行框断开 UPS。目前电池是直流系统的唯一电源。

如果您再次运行直流潮流分析,您将能够看到在这些条件下将放置在电池上的负载。单击运行直流潮流分析按钮再次运行分析意,这种情况会导致母线电压严重不足。创建这样的场景可能会得出结论。

▶ 这是一个简单的方法来模拟设施中的断电情况的示例。ETAP 允许您创造性地定制场景以满足您的需求。

6.13 直流短路分析

教程旨在介绍 ETAP 的直流短路分析模块。还将展示如何在同一项目文件中创建和保存多个分析案例。您需要使用返回代码与 OTI 联系,以便激活此模块。

▶ 点击模式工具栏上的直流短路分析按钮切换至直流短路分析 模块。

File Edit View Project Defaults RevControl Library DataX Tools 🗈 🏗 🖑 🔍 🔍 🧶 🐼 🗠 🐄 🔚 🖽 🛤 🗱 🔐 🖉 🗐 📰 🏦 🕼 🚱 📜 🙋 Example Default 💌 💷 🧷 💽 🔅 🏶 Device Settings i 🖪 📑 🔚 🖷 🔍 Phase • 🚣 No 💌 🗟 💶 🗊 🌧 🗔 📮 👪 🛷 🛛 34.5 KA ★ (東部協協 ●) 😫 Ba Study View 🔹 💺 📮 💼 DCSC Study Vi **P** 6 *P 💅 🕌 🤮 🗱 🤱 🖔 🗣 米 🗡 🛴 🏸 🛩 - 🏹 🕂 🗸 🗸 🗸 🗸 🗸 ± Switch the current presentation to DC Short-Circuit Analysis Mode.

> 只需右键单击总线并选择 Fault(故障)或 Don Not Fault (不故障),就可以选择总线是否故障。也可以从直流短路 分析案例编辑器的信息页面中选择母线进行故障诊断。取消 选择 DC BUS1 作为要发生故障的总线。

▶ 单击直流短路工具栏上的运行直流短路按钮,运行直流短路研究。如果选择Prompt,将提示您为输出报告输入一个名称。

DC Short Circuit ×	Output File Name
Image: Second system Image: Second system <td< td=""><td>Name DCSC Help OK Cancel</td></td<>	Name DCSC Help OK Cancel

▶ 分析结果将在单线图上显示。在显示选项中可以更改显示的数据量。完整的结果可以在输出报告中查看。

您可以基于相同的单线图创建新的分析案例。使项目编辑器成为活动窗口。然后,右键单击直流短路分析案例文件夹,并选择新建。文件夹旁边会出现一个新编号,表示分析案例的总数。

• ×

-

- 在分析案例工具栏下拉选项菜单中选择新的分析案例。单击 分析案例编辑器按钮打开新的分析案例编辑器。
- ➤ 在信息页面的分析案例 ID 字段中为新的分析案例命名。接下来,通过选择所需的标准来设置分析案例条件。单击"确定" 保存设置并退出编辑器。

Study Case JD Chgr1	Report Contribution Level	
	DC Short-Circuit Study Case	
Bus Selection	Info Source Model	
Fault	Charger Contribution	Battery Contribution
DCBus1 DCBus2 DCBus3	Editor Selection	Editor Selection
DCBus4 DCBus5	Constant Current	Constant Current
	AC System Short Circuit Impedance	○ Voc Behind Battery Impedance
Study Remarks		
Second line of remarks fo	Motor Internal Voltage	Short-Circuit Contributions Based on
	100% of Motor Rated Voltage	O Load Status
< Chgr1	Percent of Motor Rated Voltage	Loading Category
		Both Above Options

▶ 现在,您可以使用新的研究案例运行一个直流短路分析,方 法是像以前那样单击直流短路工具栏上的运行直流短路分析 按钮。注意充电器故障电流的变化。 入门

▶ 使用 ETAP,您可以轻松地创建和保存许多不同的分析案例条件,所有这些都在一个项目文件中。通过一个简单的下拉菜单,可以快速地从一种情况切换到另一种情况,并且可以轻松地比较结果。

6.14 蓄电池容量和放电分析

本教程的目的是介绍 ETAP 的电池尺寸和放电模块。在这个模块 中可以运行两个功能:您可以通过电池大小计算来确定系统所需的电 池大小,或者通过电池放电计算来分析现有电池的性能。您需要使用 返回代码与 OTI 联系,以便激活此模块。

▶ 点击模式工具栏上的蓄电池容量和放电分析按钮切换至蓄电

池容量和放电分析模块。

– 🔚 File	Edit V	iew Proj	ect Default	s RevControl	Library	Warehouse	Rules	Real-Time	DataX	Tools V	/indow	Help										
i 🖪 🗃		<u>, X</u> [e 🖪 🖗	Ð, Q, Q, 🦂	۲			6	.	A 🕜 📮	і 🔅 Б	ample Defa	ult	• Phi	se		•	/ 💦		Device Set	ttings - Al	NSI •
i 🗱 Ba	e	• 6	Study View	v 🔹 St	ıdy View	• 1.	Normal		- 🗅 =	• 🗊 🜧	s); : :	34	.5	KV 🔸	単語す	न 🐺 🏚	66			• +	l 🕴 🖆	BS BS
-	P Q	1	🔬 - ў •	$\sim 10^{-10}$	<u>\</u>	0	±P ±	≯ ⁺∡	 Image: Image: Ima	e P	P -JL= Q=L=	1	5	i	• *	- ў -	1	<u>/</u> N	1-2	2	vvo	© ₽∜Q =
										+ - Batt Swit Batt	ery Discha tch the cu ery Discha	arge & Sizing rrent presen arge & Sizing	g tation to g Mode.									

▶ 单击编辑分析案例按钮,打开电池尺寸分析案例编辑器。这将允许您选择要调整大小的电池,并建立您的调整标准。选择电池1,然后单击确定接受条件默认值。

Duration

<

Diversity Factor

Study Remarks

Battsize

Hours

Duty Cycle Span

Second line of remarks for "BattSize" study case.

100

%

- >

fo Sizing Discharge Adjustm	ent CSD		
Study Case ID		Battery Characteristic	c Curve
Battsize		Use Time-Amp Amp	Curve Interpolate at Fixed
Battery) Use AH-Amp (Curve Interpolate at
Battery1	-	Fixed AH	Fixed Amp
Load Model	Calculat	ion Method	Report
Based on Type of Elements	Coac	Summation	Skip Tabulated Plots
Based on Duty Cycle Type	Load	Flow Calculation	
Load		Correction Factor	
Duty Cycle Normal	•	Battery Min. Tem	perature 25.00 °C

User-Defined Temperature

Aging Compensation

OK

Initial Capacity

125

90

Cancel

%

%

▶ 单击蓄电池容量分析工具栏上的运行蓄电池容量按钮运行蓄 电池容量分析。如果选择 Prompt,将提示您为输出报告输入 一个名称。

Help

▶ 计算完成后,建议的大小调整数据将显示在单线图中。 完整 结果显示在输出报告中。 请注意, 此计算使用来自内部潮流 计算的加载数据。 为方便起见, 电池放电时间滑块允许您以 任何时间间隔查看功率流。

入门

您还可以基于负载求和方法运行研究。您可以在分析案例编辑器的信息页面上更改该方法。若要修改某一设备的工作周期,请打开元件编辑器并单击工作周期页面。占空比是一个用户定义的字段,可以输入该字段来反映制造商或设计规范。自动显示每个工作周期的图形摘要。

入门

DC Composite CSD Editor - DCED2	X	
Info Rating Duty Cycle Remarks Comment		
Duty Cycle Duty Cycle Category Normal	•	
Active Random Type Name	Amp St Time Durat	
2 X Constant Z ConstZ-2	1.143 1.010 0.01	
3 X Constant Z ConstZ-3	1.765 1.020 0.01	
Non-Random Ins Add	Del Random	
2500	DC Battery Sizing Study Case	
6875 < Print	Info Sizing Discharge Adjustment	
e; 5625 Print ->	Study Case ID	Battery Characteristic Curve
0 5625 11250 16875 22500	Battsize	─ Use Time-Amp Curve Interpolate at Fixed Amp
	Battery	Use AH-Amp Curve Interpolate at
	Battery1 -	Fixed AH Image: Sixed Amp
	Calculat	on Method Report
	Load	I Summation V Skip Tabulated Plots
	Duty Cycle Normal	Ø Battery Min. Temperature 25.00 ℃
	Hours	O User-Defined Temperature
	 Duration Duty Cycle Span 	Aging Compensation 125 %
	Diversity Factor 100 %	Initial Capacity 90 %
	Study Remarks	
	Second line of remarks for "BattSize" study cas	e.
	Battsize	Help OK Cancel

▶ 单击电池容量栏上的运行电池放电按钮,根据现有电池特性运行电池放电研究。电池放电时间滑块可再次用于在任何时间间隔查看来自电池的流量

▶ 通过单击电池大小工具栏上的电池放电图按钮,可以查看放 电图。这些图表是分析结果的一个很好的方法。

▶ ETAP的电池大小和放电模块允许您有效分析最可靠的备用电 源。以数字和图形形式显示结果时, ETAP 的结果易于解释。

入门

6.15 地下电缆管道系统

本教程的目的是介绍 ETAP 的地下跑道系统组件。它将展示如何 构建一个基本的系统,以及如何使用现有的系统执行计算。在演示版 本中禁用此模块

▶ 通过单击屏幕顶部的窗口按钮,并选择适当的选项,切换到

项目视图窗口。

➤ 右键单击 U/G 电缆管道系统文件夹以开始新的地下电缆管道系统。单击此处选择新建。一个新的 UGS 窗口将出现,名为 UGS3。

System Manager

▶ 通过单击编辑工具栏上四种类型的管道按钮之一添加管道。

▶ 通过单击编辑工具栏上的新建导管按钮,将新导管添加到此

电缆管道。您的UGS 视图现在应该如下所示:

▶ 您可以继续以这种方式添加元件,直到系统完成为止。

▶ 通过单击窗口并选择 UGS1 切换到现有的"UGS1"。

😲 UGS1 (C	alculation Mode) - ETAP 14.0.0 - [UGS1 (C	alculation Mode)]									
🔝 File	Edit View Project Library Warehou	use Rules Defaults RevControl	Wi	ndow Help							_ = x
i 🖪 🗃 🛯	I 🖶 💽 I 🗶 🗈 🖪 🕭 🔍 Q Q	🥦 🔁 🗠 😋 🖽 🖽 🛄		Cascade	* Phase		· ·	/ 🔊 📮			
🕴 🗱 Base	- 🔁 UGS1 -	🕆 🏒 Normal		Tile		i 🚔 👩	🔒 CD	* 1	SteadyStat	ie 💌	
-				Arrange Icons							
	<u> </u>	50 50		Close All Presentations	~	100	110	100		100	
	20 l l l			1 Relay View (Star Sequence-of-Operation)	เป็นหมายหมา		<u></u>				יר [©] ני
	RWI			2 Study View (Edit Mode)							• • ss
				3 UGS2 (Edit mode)							amp
8 -		$\sim \sim \sim$		4 UGS3 (Edit mode)							
<u> </u>			۷	5 UGS1 (Calculation Mode)	e de la d						
<u><u></u></u>	Cable8 Cable6 Cab	ble9 Cable9 Cable9	Т								size
40 -	\bigcirc	\frown		Steam Pipe							. <mark>↓</mark> Ľ
— -											-
M :	Cablel Cable5	Cable2									
50 -	Cables		-								la fit
											and a

▶ 要基于活动的地下电缆管道系统执行电缆降阻抗计算,请单 击模式工具栏上的"U/G 电缆管道"按钮。

▶ 双击"土壤"(UGS窗口的背景)打开地下系统编辑器。在这里, 您可以输入您的计算将基于的哪个温度。

入门

Underground System	m - UGS1					X
ID UGS1				Temperature		_
Soil				Ambient	35	°C
Туре	Clay Wet	•		Warning	80	°C
RHO 9	0			Alarm	90	°C
Heat Sources			Race	eways		
	Dista	ince			Dista	ance
ID	Horiz.	Vert.		ID	Horiz.	Vert.
Steam Pipe	75.4	35.9	RW1		19.2	30
JUGS1		• >	Und	o Find Hel	P OK	Cancel

▶ 切换回 U/G 电缆跑道,点击电缆降阻工具栏上的五个计算按 钮中的一个,运行电缆降阻计算(稳态温度)。

➤ 要显示结果,请单击工具栏中的报告管理器图标,然后选择 摘要报告。此处显示计算出的最佳电缆尺寸。

		Copen th	Manager le Report Manager				
Project:	Example		ETAP			Page:	1
Location:	Irvine, California		14.0.0C			Date:	09-15-2015
Contract:	OTI-12345678					SN:	ETAP-OTI
Engineer:	Operation Technolog	y, Inc.	Study Case: CD			Revision:	Base
Filename:	Example-ANSI		Study Case. CD			Study:	Steady-State Temperatu
			Summary (KW1)		Current	Temp	
			Summary (KW1)		Current	Temp.	
	No.	Cable ID	Conduit/Location ID	Size	Current Amp	Temp. °C	
	<u>No.</u> 1	Cable ID Cable1-1A	Conduit/Location ID CondS	Size 4/0	Current Amp 60.00	C 63.70	
	No. 1 2	Cable ID Cable1-1A Cable1-1B	Conduit/Location ID Cond5 Cond5	Size 4/0 4/0	Current Amp 60.00 60.00	Temp. °C 63.70 63.70	
	No. 1 2 3	Cable ID Cable1-1A Cable1-1B Cable1-1C	Conduit/Location ID Cond5 Cond5 Cond5	Size 4/0 4/0	Current Amp 60.00 60.00 60.00	Temp. *C 63.70 63.70 63.70	
	No. 1 2 3 4	Cable ID Cable1-1A Cable1-1B Cable1-1C Cable2	Conduit/Location ID Cond5 Cond5 Cond5 Cond5 Cond5 Cond3	Size 4/0 4/0 4/0 750	Current Amp 60.00 60.00 60.00 242.00	Temp. *C 63.70 63.70 63.70 73.01	
	No. 1 2 3 4 5	Cable ID Cable1-1A Cable1-1B Cable1-1C Cable2 Cable3-1A	Conduit/Location ID Cond5 Cond5 Cond5 Cond5 Cond3 Cond5	Size 4/0 4/0 4/0 750 2	Current Amp 60.00 60.00 60.00 242.00 47.00	Temp. *C 63.70 63.70 63.70 73.01 64.32	
	No. 1 2 3 4 5 6	Cable ID Cable1-1A Cable1-1B Cable1-1C Cable2 Cable3-1A Cable3-1B Cable3-1B	Conduit/Location ID Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5	Size 4/0 4/0 750 2 2	Current Amp 60.00 60.00 60.00 242.00 47.00 47.00	Temp. *C 63.70 63.70 63.70 73.01 64.32 64.32	
	No. 1 2 3 4 5 6 6 7 7	Cable ID Cable1-1A Cable1-1B Cable1-1C Cable2 Cable3-1A Cable3-1C Cable3-1C	Conduit/Location ID Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5	Size 4/0 4/0 4/0 750 2 2 2 1/0	Current Amp 60.00 60.00 242.00 47.00 47.00 47.00 20.00	Temp. *C 63.70 63.70 63.70 73.01 64.32 64.32 64.32 64.32	
	No. 1 2 3 4 5 6 7 8 9	Cable ID Cable1-1A Cable1-1B Cable1-1C Cable2 Cable3-1A Cable3-1C Cable3-1C Cable5-1A Cable5-1A	Conduit/Location ID Cond5 Con5	Size 4/0 4/0 4/0 750 2 2 2 4/0 4/0 4/0	Current Amp 60.00 60.00 242.00 47.00 47.00 47.00 20.00 20.00	Temp. *C 63.70 63.70 63.70 73.01 64.32 64.32 64.32 64.32 64.32 61.26 61.26	
	No. 1 2 3 4 5 6 7 8 9 10	Cable ID Cablel-1A Cablel-1B Cablel-1B Cablel-1C Cable3-1A Cable3-1A Cable3-1B Cable3-1C Cable3-1C Cable5-1B Cable5-1B Cable5-1C	Conduit/Location ID Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond6 Cond6	Size 4/0 4/0 4/0 750 2 2 2 4/0 4/0 4/0 4/0 4/0 4/0 4/0 4/0	Current Amp 60.00 60.00 242.00 47.00 47.00 47.00 20.00 20.00 20.00	Temp. *C 63.70 63.70 63.70 73.01 64.32 64.32 64.32 64.32 61.26 61.26 61.26	
	No. 1 2 3 4 5 6 7 8 9 10 11 11 12 1 1 1 1 1 1 1 1 1 1 1 1 1	Cable ID Cable1-1A Cable1-1B Cable1-1B Cable2-1C Cable3-1A Cable3-1B Cable3-1C Cable5-1A Cable5-1B Cable5-1C Cable5-2A	Conduit/Location ID Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond6 Cond6 Cond6 Cond6	Size 4/0 4/0 4/0 750 2 2 2 4/0 4/0 4/0 4/0 4/0 4/0 4/0 4/0	Current Amp 60.00 60.00 242.00 47.00 47.00 47.00 20.00 20.00 20.00 20.00	*C 63.70 63.70 63.70 64.32 64.32 64.32 64.32 61.26 61.26	
	No. 1 2 3 4 5 6 7 8 9 10 11 12 12 12 12 13 14 15 16 16 17 16 16 16 17 16 16 16 16 16 16 16 16 16 16	Cable ID Cable1-1A Cable1-1B Cable1-1B Cable2 Cable3-1A Cable3-1B Cable3-1C Cable3-1C Cable5-1A Cable5-1C Cable5-2A Cable5-2A Cable5-2B	Conduit/Location ID Cond5 Cond5 Cond5 Cond5 Cond3 Cond5 Cond5 Cond5 Cond5 Cond6 Cond6 Cond6 Cond6 Cond6	Size 4/0 4/0 4/0 750 2 2 2 4/0 4/0 4/0 4/0 4/0 4/0	Current Amp 60.00 60.00 242.00 47.00 47.00 20.00 20.00 20.00 20.00 20.00	*C 63.70 63.70 63.70 64.32 64.32 64.32 64.32 61.26 61.26 61.26 61.26	
	No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Cable ID Cable1-1A Cable1-1B Cable1-1C Cable2 Cable3-1A Cable3-1B Cable3-1C Cable5-1C Cable5-1C Cable5-1C Cable5-2A Cable5-2B Cable5-2C	Conduit/Location ID Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond6 Cond6 Cond6 Cond6 Cond6 Cond6	Size 4/0 4/0 4/0 750 2 2 2 4/0 4/0 4/0 4/0 4/0 4/0 4/0 4/0	Current Amp 60.00 60.00 242.00 47.00 47.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	Temp. *C 63.70 63.70 64.32 64.32 64.32 64.32 64.32 61.26 61.26 61.26 61.26 61.26 61.26	
	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Cable ID Cable1-1A Cable1-1B Cable1-1C Cable2 Cable3-1A Cable3-1B Cable3-1C Cable3-1B Cable5-1C Cable5-1C Cable5-2A Cable5-2C Cable5-2C Cable5-2C Cable5-1A	Conduit/Location ID Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond5 Cond6 Cond5 Cond6 Con6	Size 40 40 40 40 750 2 2 2 40 40 40 40 40 40 40 30	Current Amp 60.00 60.00 242.00 47.00 47.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	Temp. *C 63.70 63.70 64.32 64.32 64.32 64.32 64.32 61.26 61.26 61.26 61.26 61.26 61.26 61.26 61.26 78.51	
	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Cable ID Cable1-1A Cable1-1B Cable1-1C Cable2-1A Cable3-1A Cable3-1B Cable3-1C Cable3-1B Cable5-1C Cable5-1C Cable5-2A Cable5-2C Cable5-2C Cable5-2A Cable5-2A Cable5-2A Cable5-2A Cable5-1A Cable5-1B	Conduit/Location ID Cond5 Cond6 Cond2 Cond	Size 40 40 40 40 750 2 2 40 40 40 40 40 40 40 30 30 30	Current Amp 60.00 60.00 242.00 47.00 47.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 156.00	Temp. *C 63.70 63.70 64.32 64.32 64.32 64.32 64.32 61.26 61.26 61.26 61.26 61.26 61.26 61.26 61.26 78.51 78.51	

6.16 接地网系统

本教程的目的是介绍 ETAP 的地面网格系统组件。概述了如何建 立一个新的地面电网系统。在演示版本中禁用此模块。

➢ 接地网系 ETAP 中的一个单独应用程序。通过单击 AC 编辑工 具栏上的接地网元件按钮,然后在 OLV 中单击以放置元件, 可以创建新的接地网,击 OLV 中的栅格图形以打开接地网口。 选择要开始的默认计算方法。

▶ 接地网表示将出现在一个新窗口中。单击 IEEE 工具栏中的一

个选项,选择一个预定义的网络。单击窗口底部空白部分的

任何位置来放置网络。

▶ 接地网显示窗口将如下所示

➤ 若要从接地网中添加或删除接地棒或导体,请在T形内双击。 在导体页面上,您可以更改在水平或垂直方向上均匀分布的 导体的数量。在接地棒页上,您可以选择接地棒配置。

IEEE Group Editor	X	IEEE Group Editor	×
Conductors Rods		Conductors Rods	
Grid Size # of Conductors	Material Constants	Rods	Material Constants
Lx, long 50 ft X Direction	Conductivity 100.0	# of Roos 8	Conductivity 100.0
Lx, short 25 ft	Alpha Factor	Diameter 0.75 inch	Alpha Factor
Ly, short 25 ft 6	Ko Factor 234	Length 10 ft	Ko Factor 234
Conductors Depth Size 1.64 It 4/0 V AWG/kcmil	Fusing Temperature	Arrangement Rods Throughout Grid Area No Ground Rods Type Rods Throughout Grid Area Type Rods In Grid Comers	Fusing Temperature 1083 Resistivity @ 20 C 1.72
Cost 3.3 \$/ft	Thermal Capacity	Interior Rods Only Cost True Syrrou	Thermal Capacity
Help OK C	ancel	Нер ОК	Cancel

▶ 要查看接地网的三维显示,请使用接地网窗口左上角的滚动 165

Depth	^
4	b.

条。若要绕垂直轴自动旋转,请双击 3d 显示。

▶ 您还可以修改您的接地网下的土壤层的电阻率和厚度。双击 在接地网的右上角土壤部分的任何位置。将出现土壤编辑器。

S	oil Editor							x
	Soil Editor							
-		Resistivity ohm-m		Material			Depth ft	
	Surface Material	2500	Clean lime	stone		•	0.5	
	Top Layer	1000	Dry soil			•	5	
	Lower Layer	100	Moist soil			•		
		Help	>	ок	Cancel			

▶ 单击模式工具栏上的接地网研究按钮,切换到计算模式。单 击接地网工具栏上的此按钮运行接地网计算。

Mode Ground-Grid Study	Gro Ground-Grid Calc	Enter Output Report Filename Name GGSSTut Help OK	Cancel
---------------------------	-------------------------	---	--------

▶ 计算完成后,将显示摘要和报警窗口,通知您任何超出的条

GRD Analysis Alert View for GRD1
Summary and Alert
Result Summary
Calculated Tolerable Volts Volts
Touch 7393 695.1
Step 11316.1 2288.2
GPR 15023.1 Volts Rg 7.492 Ohm
Alarm & Warnings
The maximum Touch Voltage exceeds the tolerable limits
The maximum Step Voltage exceeds the tolerable limits
Spacing between parallel conductors is smaller than 2.5 m or is greater than 22.5 m
Close Help

6.17 电缆牵引系统

本教程的目的是介绍 ETAP 的电缆牵引模块。将演示如何建模一 个拉动路径,以及如何进行计算以确定侧壁压力和总张力。在演示版 本中禁用此模块。

要开始电缆牵引分析,请激活项目编辑器视图。双击电缆牵引系统文件夹并选择任何现有的学习演示文稿。要创建一个新系统,右键单击电缆牵引系统文件夹并选择新建。

牵引的特征可以在分析案例编辑器中概述。若要打开此对话框,请单击分析案例工具栏上的编辑分析案例按钮。设置分

	Study Case
	Study Case ID Alert Alert Alert Auto Display
Study Case	Cable Tolerance 3-Cable Configuration Weight 5 % Outside Diameter 5 %
Edit Study Case	Max. Allowable Tension Reduction Factor RF-123 0 %
	RF-1/C 20 % Pulling Method © Pulling Eye RF-3/C 40 % C Basket Grip
	< CP1 Help OK Cancel

析条件,然后单击确定保存数据并退出编辑器。

➤ 若要打开导管编辑器,请双击电缆牵引演示窗口右上角的导管。设置管道的物理特性,或者保留默认值,单击确定保存数据并退出。

Conduit	ζ
Properties	
Info	
ID Conduit	
Type OTHER -	
Dimension	
Size OD Thickness 6.00 ▼ 6.625 0.300	
Friction Factor % Fill	
35 35 0.0	
Undo Help OK Cancel	

➤ 要向管道添加电缆,请单击新建电缆或现有电缆按钮,然后 单击管道。增加的电缆将出现在管道内。要设置电缆特性, 169

23

请双击电缆。将显示电线	览编辑器。]	要从管道中删除	电缆,只
需单击以选择电缆,然后	后按删除键。		
Cable Pulling	Cable2		
 6 L d <u>M</u>		\sim	Conduit
Exist Cable New Cable	A/ 511 - 00 5		
	% Fill = 33.5		

▶ 若要将导管的另一段添加到牵引路径,请单击"新建管道段" 按钮。

Cable Pulling					
e e 🍋 🔍 🕒 🛝					
New Segment					

▶ 布线本身的物理特性可以使用电缆牵引演示窗口下半部分的 字段输入。输入数据时,窗口左上角的三维显示将显示修改。

Segment Name	AB	BC	CD	DE	EF		
Length	6	410	170	12	5		
Slope	-90	-10	7	0	90		
ID		0	0	•	0	F	ID
Bend Lo	ocation	B-B1	C-C1	D-D1	E-E1		
Horizonta	al Angle	0	45	0	0		
Bend	Radius	3	3	3	3		

现在绘制了牵引路径,可以运行计算来确定系统的最大张力。 单击"计算电缆拉力"按钮开始计算。可能会提示您输入输 出报告的名称

	Enter Output Report Filename
Cable Pulling	Name CPReport
	Help OK Cancel
	Ĺ

▶ 如果超出研究中的任何指定条件,将显示摘要和报警窗口,

V H	— щ	11-4	N 141				
并显	不警	报	或警	告	消	息	0

Alert	×
Summary and Alert	
Result Summary	
Max. Allowable Pulling Tension 18003	lbs
Equivalent length of cable for pulling off the reel 0.0	ft
Total Length of Run (Pull) 615	ft
Alarm & Warning Cable tension for reverse pull exceeds the side wall pressure limit	

▶ 计算的更详细结果可以在输入路径数据下面找到。请注意,

超出的条件将显示为红色。

Tensions (lbs)					
FWD Pull 0	0	293	566	1010	1026
REV Pull 1399	1381	178	14	0	0
Max. Sidewall	1237	1237	1237	1237	

➢ ETAP 的电缆牵引系统使规划或设计新的电缆布线变得容易。 详细的数据输入允许绘制复杂的拉动路径几何图形,从而获 得精确的解决方案。

6.18 配电板系统

本教程的目的是介绍 ETAP 的配电板系统模块。将演示如何将配 电板连接到母线和其他配电板,以及如何将加载数据输入配电板计划 页面。注意,您不能在此演示版中添加新的配电板,但可以浏览示例 项目中的现有配电板。

▶ 确保您处于编辑模式。双击打开复合网络 Sub3。

将配电板连接到母线与任何其他单线图元件相同。每个配电板的默认连接引脚都在顶部。注意配电板 11 是如何连接的。

▶ 双击配电板 11 以打开配电板编辑器。在信息页面上,注意配

nfo Rating Schedule Summary Equiv. Load Remarks Comment	
0.48 kV 150 A	
Info ID SubPNL1 Element MainPNL	Revision Data
Equipment Tag #	Configuration Normal Main Disconnect @ Close
Description	Status Open
Data Type Estimate Priority Critical	Service Out State As-Built
Phase Arrangement ABC CBA NEC 1st CKT A v	Connection ③ 3-Phase 4 Wire ① 1-Phase

电板是一个三相元件。在额定值页面上,您将看到额定电压为0.48kV,以匹配连接的母线电压。

在"明细表"页上,可以通过单击相应的链接框并从下拉菜 单中选择一个选项来填充各个配电板插槽。如果要将插槽连 接到外部元素,请从四个 Ext-X 插槽中选择一个。注意连接 #2 和#8 被指定为外部连接。配电板明细表编辑器的摘要页详 细说明了配电板上的总负载。 入门

教	利	₽
イハ	12	т

nel Sc	hedule	- Sub	PNL1					
Info	Rating	g Sc	hedule Summary	Equiv. Load Re	emarks	Comment		
0.4	8KV 15	A 00						
Desc	cription	Ratin	g/Limit Loading I	Protective Device	Feed	ler		h 🛍 🖉
#	Phase	Pole	Name	Link	State	Load Type	Status	Load Description
1	A	1	Heater 1A	Internal	[ON]	Heating	Non-Continuous	
3	В	1	Ltg - Annex Rm	Internal	ON	General Ltg	Continuous	
5	С	3	Fan C	Internal	ON	Motor	Continuous	
7	Α							
9	В							
11	С	1	Future	Spare	OFF			
2	Α	3	SAM Unit	Internal	ON	Appliance DU	Continuous	
4	В							
6	С							
8	Α	1	Maint. Shop	Internal	ON	Small Appliance	Continuous	
10	В	1	Kitchen	Internal	ON	Kitchen NDU	Continuous	
12	С	1	General Recp.	Internal		Receptacle NDU	Continuous	
			E 🛍 🔽	SubPN	L1		- 🔊 🎮 ? 🛛	K Cancel

▶ 如果您有一个三相配电板,并且希望将三相负载连接到它, 则需要更改极数。因此,配电板中使用了三个插槽。 入门

ane	el Scl	hedule	- Sub	PNL1						x
In	fo	Ratin	g Sc	hedule Summary	Equiv. Load Re	emarks	Comment			
Ιг	0.4	8 kV 1	50 A							_
臣	0.4									
 _	Desc	ription	Ratin	na/Limit Loadina	Protective Device	Feed	ler		h 🔒 🖉	
	#	Phase	Pole	Name	Link	State	Load Type	Status	Load Description	
	1	A	1	Heater 1A	Internal	ON	Heating	Non-Continuous	2000 00000000	
	3	В	1	Ltg - Annex Rm	Internal	ON	General Ltg	Continuous		
	5	С	3 🖵	Fan C	Internal	ION	Motor	Continuous		
	7	А	1							
	9	В	2							
	11	С	F	Euture	Spare	OFF				
	2	A	3	SAM Unit	Internal	ON	Appliance DU	Continuous		
	4	B								
	6	C	4	M	1.1.1	_	C 1 A 1	0		
	8	A	1	Maint. Shop	Internal	ON	Small Appliance	Continuous		
\mathbf{F}	12	C	1	General Reco			Recentacle NDU	Continuous		
	12	U.		deneral necp.	incentar		Neceptacie ND0	Continuous		
L										
									K Caraal	
				E 🖻 🖻	SubPN	L1	•	2 🙆 🙎 🕒	Cancel	
_										

▶ 按照上述步骤将另一个配电板添加到单线图。通过将鼠标移动到新配电板的连接引脚上并将其拖动到现有面板(Ext-2)的配电板明细表中指定的引脚,可以将此配电板连接到现有配电板。

▶ 使用潮流分析案例编辑器,可以在面板系统上执行潮流计算。 单击模式工具栏上的潮流分析按钮。然后单击分析案例工具 栏上的编辑分析案例按钮。选中标题为计算配电板系统的框。

😤 File Edit View Project Defaults RevControl Libra	ry Warehouse Rules Real-Time Dat	taX Tools Window Help			
। 👍 📑 🔜 । 🚍 🕵 । 🔏 🕒 🌔 🔍 🔍 🔍 🙊 🐼 ।	o 🗙 🛤 🛤 🇱 🔐 🥜 🔳 🛙	🔳 🐴 🕜 📮 🍫 ETAP (Default)	 Phase 	- 💷 🖉 💽 🏶	Device Settings - ANSI
🗱 Base 🔹 🖬 Study View 💌 Study Vie	w 🔹 🚣 Normal 🔹 👔	s 🚥 🗊 🥋 🗔 🚽 🐉 🛷 🛛 34.5	- kv 🔸 堂 🏭 🛤 🛤 🏚	66	💌 🐥 📮 🤅 💼 🛛 LF Rep
🗕 😌 🗲 🛦 🎺 🖓 🎶	└ 👩 ±P ±≠ 🛣 🛔	🗄 🤮 🎏 🏒 🎽	ତ 🗣 🗶 🞸	1 1- N-2	
Cod Plow Switch the current presentation to Load Plow Analysis Mode.		Study Case E IF 200 DF E dit Stud E dit Stud	र द्रु9 LF-Report y Case urrently selected Study Case	• 🔤 Cable	▼ ×
	Load Flow Study Case				
	Info Loading Adjuttment Alert Study Case ID E E E LF 200 DF E E E Report Unit Rated Voltage Voltage Voltage Operating Voltage % V Voltage Voltage	Method Adaptive Newton-Raphoon Mexton-Raphoon Fast-Decoupled Coclemented Gause-Seidel Coclemented Gause-Seidel Coclemented Gause-Seidel Method Method Parton-Raphoon	teration 99 recision 0.0001		

▶ 从这里开始,您可以在 ETAP 中的配电板系统上运行潮流分析,
<pre>Pie Ed Ver Popt Drukk Exceterio Langy Verhous Built Built Paul Teo Lang Verhous B</pre>												
Image: State in the state i	÷9 F	ile Edit View	Project Defaults Re	vControl Library	Warehouse Rules Rea	I-Time DataX Tools	Window Help			_		- 8×
Image: State in the state	i 🔒 🛛	i 🔒 📮 🔍	🔏 🕒 🖪 🖑 🍳 Q	, 🔍 🔗 💽 🔊 (> 1 🖻 🛤 🎆 🚮 🕯	8 🔳 🖬 🛱 🔞	🖕 🍄 ETAP (Default)	 Phase 		- 🛄 🖉 🚽 🎕	Device Settings - ANSI	• =
Sub 3 Surg I Sub 3 Image: Sub 3 Image: Sub 3 Image: Sub 3	: 20 E	Base	G Study View	 Sub3 Net 	 Normal 	• 🖄 🕶 🕒 f		1.5 KV 🖡 🚆	: 이 너희 !			2 Ç
sub 3 Sherr sub 3	-	• 😌 🗲	🖌 🍝 🛧	7 Mr 📐	6 ±P ±≯	👗 🛗 🔩	<mark>۹ ۲۰۰۰ ک</mark>	为 🖸 🕩	* *	- 🛃 📈 N-2		
Sub 3 Sup												^ P→
Sub 3 Pergr HT7755 HT7755 HT7755 HT7755 HT7755 HT7755 HT7755 HT7			Sub	3								- q.≓
sub 3 Swy Sub 3 Swy	<u></u>		6									
9953 Sub3 Swy Sub3 Swy Sub3 Swy	Υţ		2	j1356								
Sub3 Swgr	6		able Cable)						99.53 %		4
sub3 Sayr sub3 Sayr			H .									
Image: State of the state	00	Sub3 Swgr										
Image: Signed state stat		·	+477.5	193.7		352.4			1+538.3			60
Image: Submet 1 Image: Submet 1 <td< td=""><td></td><td></td><td>j272.6</td><td>j650.3</td><td>Ĩ</td><td>j132</td><td></td><td></td><td>j299.2</td><td></td><td></td><td></td></td<>			j272.6	j650.3	Ĩ	j132			j299.2			
Image: Submit 1 Image: Submit 1 <td< td=""><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td>< Line4</td><td></td><td></td><td>Unit</td></td<>				+					< Line4			Unit
Image: Submit 1 Image: Submit 1 <td< td=""><td>¥.</td><td></td><td></td><td>h</td><td>a construction of the second s</td><td>XFMR 3</td><td></td><td></td><td>PLUTO</td><td>97.53%</td><td></td><td>kW</td></td<>	¥.			h	a construction of the second s	XFMR 3			PLUTO	97.53%		kW
Image: Second State	<u><u></u></u>			ų .		352						%V
MCC 3A Pump 1 500 HP 120.7 120.8 500 HP 120.8 500 HP 120.7 10.535 MainPNL 3Ph-4W 50 KVA 50	<u>Î</u>			0	MCCI	4j122.2	101.1 %	Bus9		_		٠ <u>+</u>
Image: Substrate of the			MCC 3A	Pump 1 500 HP	267.1	↓ 84.9+j1.47		+37	5	7.3+j52		h l
Comp Mtr1 2 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5	1				120.0	Ĭ			SF	Fdr2		Υ cta P
Comp Mir1 2 4 4 4 4 4 4 4 4 4 4 4 4 4								\heartsuit	I+A	7.3+J52		i ≊ iq
246-90.937*	Ø				Comp Mtr1			LUMP6 0.5 MVA	Å			
MainPNL 3Ph-4W 100,8 % Cable19 SubPNL1 240 V PNL 120,6+0.312 +20,6+0.312 +156,6+151.5					29.6+j0.93	7 [←]	35		Ī			100 E
SubPNL1 240 V PNL +20.6+0.312 1-P Air Drop 97.06 % Y Y Y Y Y PhI2 175 kVA 175 kVA						MainPNL 3Ph-4W			¦ ⊂a	ble19		V _→ P
SubPNL1 3Ph-4W	•••					T6	ulu 100.89	%	a 2-1	L/C 1/0		
SubPNI 240 V PNL 420.6+j0.312 1-P Air Drop 97.06 % 3Ph-4W 420.6+j0.312 4156.6+j51.5 4156.6+j51.5 PnIZ 175 kVA 175 kVA	-				<u></u>	50 kVA						
3Ph-4W 420.6+(0.312 +20.6+(0.312 Ph12 175 kVA 175 kVA						240 V PNI	100 6110 010	1-P A	r Drop	07.06%		
Pritz 175 kVA					3Ph-4W	240 0 1 14	20.6+j0.312		+15	6.6+j51.5		
Prilz 175 kVA							120101301012					
Pril2 1Ph-3W							ф		\checkmark			
Pni2 1Ph-3W									175 kVA			
							Pnl2 1Ph-3W					
c		<									>	

如潮流分析教程中所述。选择在右侧工具栏上切换配电板和

UPS 系统的结果以切换结果。注意电流流入和流出配电板。

6.19 输出报告

本教程的目的是介绍 ETAP 中输出报告的功能。显示和打印水晶 报表的基本功能,以及将报表数据导出到其他程序和使用文本报表功 能等更高级的功能。

在 ETAP 中打开项目文件并运行一个研究。出于本教程的目的, 使用了潮流分析。计算完成后,从分析案例工具栏的下拉列 表中选择一个报告,并单击报告管理器按钮来显示所选的报告。

▶ 或者,要同时显示单个或多个报告,单击当前分析工具栏上的报告管理器按钮。(在本例中,它是潮流分析工具栏。)

	Load Flow Report Manager
	Complete Input Result Summary
Load Flow ×	
	Complete Viewer
q.º 🗘 🔿 🗫 📷 🔚 💭 🚵 🚵 🏡 yub 'yub 'yu 🖓 👘 🖼 🔤 d 🖥 d 🖏 🚳	O PDF
Penort Manager	MS Word
Open the Report Manager	Rich Text Format
	MS Excel
	Set As Default
	Output Report Name
	LF-Report
	Path
	D:\Pecan64Rel\Example-ANSI
	Help OK Cancel

注意:报告管理器中每个选项卡最多可以显示一个报表。

▶ 所选报告将自动显示在新窗口中。要浏览报告,请使用窗口

顶部的箭头。要打印水晶报告,请单击窗口顶部的打印按钮,

🖳 LF-Report.LF1S / Complete		X O
E-Report.LF1S / Complete	Print General Layout Select Printer Select Printer Status: Ready Location: Comment: Page Range All Selection Current Page Pages: 1-17 Enter either a single page number or a single page range. For example, 5-12 Pr	Collate 123 123
	Generation Category(2): Normal	
Current Page No.: 1	Total Page No.: 1+	Zoom Factor: 100%

并从生成的窗口中选择您的选项。

输出报告的另一个有用功能是将结果数据导出到另一个程序的选项。Adobe Acrobat Reader, Microsoft Excel 和 Microsoft Word 只是可以导出输出数据的一些程序。选择要 在"潮流报告管理器"中接收数据的应用程序。然后单击确 定。

.oad I	Flow							×
¥₽ ₽	Ф	🚫 🎄 📄 📑 👒 🔯 🎶 Amp % V	Ś	þ	盦 🚉	ן ביי <u>ר</u> יין (¦∛	6
		Report Manager Open the Report Manager						
	ſ	Load Flow Report Manager				×	J	
		Complete Input Result Summary						
		Complete		 Vi PI M Ri M Se 	iewer DF IS Word ich Text Fo IS Excel et As Defau	mat ılt		
		Output Report Name						
		LF-Report						
		Path	151					
		Help OK			Cancel			

➢ ETAP的输出报告和相关工具是组织分析结果的快速有效的方法。通过这些文档可以显示您的发现,使准备演示文稿和摘要文档变得更容易。

6.20 设备库

本教程的目的是介绍 ETAP 的设备库功能。将解释如何访问、修改、导出和添加到设备库数据。演示版的设备库是商用版设备库的精简形式。

▶ 打开 ETAP 工程文件。在屏幕顶部,单击设备部按钮。根据项目文件以前是否已连接到库,可能会显示警告消息。这只是说明需要连接库。单击每条消息上的确定。

■ File Edit View Project	Library Warehouse Rul	es Defaults Tools RevControl Real-Time Window
Base St	Cable Fire Protection Transmission Line Motor Nameplate Motor CKT Model	
	Motor Load Model	ETAP Failed to open Library file due to Read-Only attribute.
		D:\Pecan64Rel1Lib\etaplib1400.lib Remove Read-Only attribute Degrade access level to read-only Select another Library file Help OK

▶ 通过浏览连接到项目库以查找位置并单击"打开"按钮。

Select Library File to OPEN							>
> -> 🛧 📙 > This PC > Li	.ocal Disk (C:) > ETAP 1610 > lib >			✓ [™] Se	earch lib		P
Organize 👻 New folder					=	-	?
✓ Quick access Desktop Mee Mee Mee	rrgeLib plib1610.lib IETAP1610.lib	Date modified 3/23/2017 2:30 PM 3/14/2017 11:47 AM 3/14/2017 11:47 AM	Type File folder LIB File LIB File	Size 201,292 KB 201,292 KB			
File name: Etap	Lib1610.lib			~ L	ibrary Files (*.lib)	~

入门

- ▶ 一旦有了与项目文件关联的设备库,就可以使用此设备库文件中包含的数据。可以通过多种方式访问使用设备库。
- ➤ 访问设备库的一种方法是从各种设备编辑器。双击 OLD 中的 电缆等元素以打开设备编辑器。单击信息页面上的设备库按 钮以打开电缆库快速选择窗口。选择所需的电缆电压,类型 和大小,然后单击确定。所选电缆的库数据将自动传输到该 电缆的编辑器。

教程

	Library	Quick Pic	k - Cable	1		_		_			
Sizing - Ph		Unit 🚽	Freq 🚽	Туре 🚽	kV 🖕	% Class 💌	#/C 🕌	Insul 🖕	Source 🚽	Install	•
Info	243	English	60	CU	15	100	3/C	Paper	NEC	Mag.	
	244	English	60	CU	15	100	3/C	Rubber	NEC	Mag.	
NEC	245	English	60	CU	15	100	3/C	Rubber	NEC	Mag.	
Bubb	246	English	60	CU	15	100	1/C	Rubber 2	NEC	Mag.	
	247	English	60	CU	15	133	1/C	EPR	*AmrCbl Mar	Mag.	
	248	English	60	CU	15	133	3/C	EPR	*AmrCbl Mar	Mag.	
Info	249	English	60	CU	15	133	1/C	EPR	AmrCbl Mar	Mag.	
	250	English	60	CU	15	133	3/C	EPR	AmrCbl Mar	Mag.	
	251	English	60	CU	15	133	1/C	EPR	KERITE	Mag.	
From S	252	English	60	CU	15	133	1/C	EPR	KERITE	Mag.	
G	253	English	60	CU	15	133	3/C	EPR	KERITE	Mag.	
Tag Narį				Help			ĸ	2/0	Cancel		
Description						- No. of Co	onductors /	Phase			
Length Length Tolerance	n 1250 0) [ft		Library		Connecti	on ase ase				
								_1			

若要打开具有编辑功能的设备库(前提是用户配置文件具有编辑授权),请单击屏幕顶部的设备库菜单,然后选择要查 看或编辑的设备库。将显示选定的设备库编辑器。

🔝 File Edit Vi	ew Pr	oject Lib	rary War	ehouse R	ules Def	aults To	ols RevCo	ontrol Rea	I-Time Window		
: 🖪 🗃 🔚 I 🖨 🖸	3. I X	E (Cable	N			I 🏢 👧 (<u>f</u> 8 [🖪 🗛 I 🕜 🚚 İ		
😫 Base	-	ک ۲۵	Cable Fir	e Protection	n	+ - 4	Normal	-	🗈 💿 🚽 🏟		
PQ	1	\wedge	Transmis	sion Line		1.0	+ 🖌 +	- + -	P Q P JH		
V			Motor N	ameplate			- 4		Q-1		
P			Motor C	T Model							
			Motor C		Model						
Q			Motor Ci	aracteristic	Model						
A	-		Motor Lo	ad Model							
	💷 Ca	ble Library	r								×
		Unit 🚽	Freq 🚽	Туре 🚽	kV 🚽	Class 🔻	#/C 🚽	Insul 🚽	Source 🚽	Install 🚽	Â
	▶1	English	50	AL	0.6	100	3/C	Rubber	ICEA	Mag.	
	2	English	50	AL	0.6	100	1/C	Rubber 2	ICEA	Mag.	
	3	English	50	AL	0.6	100	1/C	Rubber 2	ICEA-1994	Mag.	
	4	English	50	AL	0.6	100	3/C	Rubber	NEC	Mag.	
	5	English	50	AL	0.6	100	1/C	Rubber 2	NEC	Mag.	
	6	English	50	AL	0.6	100	3/C	Rubber	ICEA	Non-Mag.	
	7	English	50	AL	0.6	100	1/C	Rubber 2	ICEA	Non-Mag.	
	8	English	50	AL	0.6	100	1/C	Rubber 2	ICEA-1994	Non-Mag.	
	9	English	50	AL	0.6	100	3/C	Rubber	NEC	Non-Mag.	
	10	English	50	AL	0.6	100	1/C	Rubber 2	NEC	Non-Mag.	
	11	English	50	CU	0.6	100	3/C	Rubber	ICEA	Mag.	Ŧ
			C A					Size			
		U, Ta	To Bi	у А/БАГ НО Та	npacity Te	Unit F Lenath	Rac Base Temp		Phase	G/N	
		20	90 9	10 40	90 .	1000 ft	75	AW	/G/kcmil 8	*	
								A	vail. Sizes 4		
								AI	2 1 Sizes 1		
								A	1/0	Ŧ	
		_			[
			Edit Proper	ties	Add	Dele	te C	ору	Help Close		

▶ 通过使用设备库编辑器中的相应按钮,可以编辑、添加、删除或复制设备库设备。

	Unit 🖕	Freq 🖕	Туре	Cable Library : Add		Sec	-
1	Enalish	50	AL	Base	Info	Conductor	Insulation
2	English	50	AL	Unit System	Source Name	Туре	Туре
3	English	50	AL	English 🔻	NEC	Copper 🔹	Rubber
4	English	50	AL	Frequency	Installation	# / Cable	kV
5	English	50	AL	60 🗸	Magnetic 👻	3/C 🔻	0.6 👻
6	English	50	AL		····•		% Class
7	English	50	AL	U/G Ampacity	A/G Ampacity	Unit Length	100 -
8	English	50	AL	Ta	Ta		
9	English	50	AL	20 °C	40 °C	1000 ft 🔻	
0	English	50	AL	To	To		OK
1	English	50	CU	90 **	90 °C	Resistance	
				50 0	30 0	Base Temp.	Cancel
	_ U/	G Ampacity	y A/	RHU		75 ▼ °C	
	Ta	To R	HO	90			Help
	20	90 9	90				
					• A	Vall. Sizes 4 2	
					() A	Il Sizes 1	

教程

入门

▶ 另一种可以访问设备库数据的方法是使用 Crystal 报告格式。 单击屏幕顶部的设备库按钮,然后选择导出。通过单击相应的按钮选择要查看的设备库,然后单击"确定"。请注意, 一次可以选择多个设备库。最后,从设备库报告管理器中选择要查看的报告,然后单击"确定"。所选库将以 Crysta 报告格式显示。有关详细信息,请参阅输出报告教程。此功能在演示版本中被禁用。

185

